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Abstract

This dissertation presents a novel method for discretizing the incompressible Navier-

Stokes equations. Within numerical simulation, the underlying spatial discretization

plays a crucial role in defining the properties of a numerical method. In order to

resolve solution features on multiple length scales, adaptive spatial discretizations

using unstructured and block structured approaches have been developed. However,

while many of these methods have resolved the mathematical issues, scaling these

methods to large problems which require the use of large distributed memory systems

has been problematic due to issues of domain decomposition and remeshing. Block

structured approaches such as Adaptive Mesh Refinement (AMR) and Chimera grid

methods have been particularly successful since they allow for accurate fluid-structure

interaction and spatial adaptivity. However, their scalability has been limited when

applied to more complicated problems due the large number of grids required in AMR

methods and the complicated linear systems arising in Chimera methods.

This dissertation introduces an overlapping grid method that uses moving and over-

lapping Cartesian grids with independently specified cell sizes to address adaptivity.

Unlike AMR approaches, by allowing the Cartesian patches to be arbitrarily rotated

and translated, far fewer patches are necessary to rasterize solid boundaries and flow

features. This both improves cache coherency and greatly simplifies domain decom-

position. Advection is handled with first and second order accurate semi-Lagrangian

schemes in order to alleviate any time step restriction associated with small grid cell

sizes. The primary focus of this dissertation, however, is the Poisson discretization
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used in order to solve the elliptic equation for the Navier-Stokes pressure or that re-

sulting from the temporal discretization of parabolic terms such as viscosity. A novel

discretization is introduced where the coupling terms are defined implicitly through

the use of a Voronoi diagram computed for a subset of the Cartesian grid cell cen-

ters. The resulting Poisson discretization is second order accurate and requires the

solution of a symmetric positive definite linear system. Each aspect of the approach

is demonstrated independently on test problems in order to show efficacy and con-

vergence before finally addressing a number of common test cases for incompressible

flow with stationary and moving solid bodies. The method is then extended to handle

two-way coupled fluid structure interaction using a monolithic immersed boundary

approach. In order to represent free surfaces the particle level set method is adapted

to overlapping grids. The method includes a new treatment for particles near grid

boundaries with disparate cell sizes, and strategies to deal with issues of locality in

the implementation of the level set and fast marching algorithms resulting from the

different bandwidths of valid values near the interface on different grids. The resulting

method is capable of simulating problems with solution features on disparate scales

while efficiently exploiting distributed computational resources.
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Chapter 1

Introduction

Over the past several decades numerical simulation has become increasingly impor-

tant in the development of new technologies due to its ability to allow a much more

accurate understanding of many natural phenomena. In turn, this understanding has

allowed many leaps in technology by improving and accelerating design and proto-

typing processes. In particular, the simulation of incompressible fluids has played

a major role in these developments. This is due to the fact that many liquids and

even low speed compressible fluids are accurately modeled using an incompressible

fluid. For many applications water simulation is significant and involves the simula-

tion of an incompressible liquid phase and a constant pressure gas phase separated

by a free surface interface. Like simpler incompressible flow, we address free surface

incompressible flow also due to the wide spread applicability of these phenomena and

the fact that many of the techniques used for free surface incompressible flow simu-

lation also form the building blocks for methods capable of simulating more complex

problems.

Adaptive discretizations are important in many numerical simulation problems since

it is often necessary to resolve details on multiple length and time scales. In particular,

fluid dynamics simulations often exhibit details on many different scales as part of

highly detailed flow patterns. In fluid structure interaction problems it is critical to

1
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Figure 1.1: The domain around a circle is discretized by an unstructured triangular
mesh. The coloring illustrates the domain decomposition.

resolve the effects of boundary layers and the turbulent flows in the wakes behind

objects in order to accurately predict the effect of the fluid on the structure. Many

of these problems also incorporate large domains away from the structure and region

of interest, thus requiring the accurate modeling of far field boundary conditions.

This necessitates a method that allows large regions of space to be modeled using

a reduced number of degrees of freedom. Much of this work was inspired by the

large scale ship modeling performed in [106, 15, 112]. This work is exemplar of the

complicated problems we are interested in solving due to the free surface viscous

incompressible flow being modeled in order to capture a wide range of details such as

a ship’s breaking bow waves and bubbles entrained in its wake.

1.1 Unstructured methods

There are a wide variety of methods for adaptively discretizing space. Unstructured

methods include both mesh based methods which use topologically connected meshes
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constructed with tetrahedra (see e.g. [61, 60, 79]), hexahedra and other irregularly

shaped (see e.g. [27, 75, 14, 56]) and non-linear elements, as well as meshless meth-

ods which use disjoint particles such as Smoothed Particle Hydrodynamics (SPH)

(see e.g. [37, 74, 105, 24, 22]) and the Moving-Particle Semi-Implicit method (see

e.g. [62, 113]). Many of these methods are also mirrored in the computer graphics

literature (see e.g. [34, 59] for tetrahedral based methods and [25, 82, 89] for particle

based methods). While these methods allow for conceptually simple adaptivity they

often produce inaccurate numerical derivatives due to poorly conditioned elements.

Dynamic remeshing, such as that used in many Arbitrary Lagrangian Eulerian (ALE)

schemes (see e.g. [110, 51]), can be used to control the conditioning of elements dur-

ing simulation. However, in addition to the significant added computational cost and

complexity, these methods tend to introduce significant numerical dissipation if val-

ues need to be remapped (see e.g. [77, 76, 72, 73, 63]). In order to avoid these issues,

many methods combining unstructured and structured methods have been developed.

The two most well known are the Particle-In-Cell method (PIC) (see [42]) and the

Fluid-Implicit Particle method (FLIP) (see [11, 10]) which use Lagrangian particles

for advection and a background grid to solve for pressure. Other authors have ex-

plored using structured and unstructured methods to model different flow regimes

within the same simulation, such as by combining SPH and Cartesian grid solvers

(see e.g. [71]). While there is a wealth of literature addressing the mathematical issues

of unstructured methods with regards to remeshing and computing accurate high or-

der numerical stencils, the computational complexity and cost of these methods can

still weigh heavily against the level of adaptivity afforded. For example, due to the

unstructured nature of these discretizations it is generally not possible to store data in

a cache coherent memory layout. Instead, pointer structures, are often used to store

values incurring a surprisingly large computational expense due to the high number of

indirections during traversal and the resulting increase in cache misses. Furthermore,

in parallel computing environments, finding and maintaining (due to remeshing) a do-

main decomposition that evenly distributes the computational work load and storage

requirements can cost as much as or even more than the time integration procedure.

Figure 1.1 illustrates a typical domain decomposition of an unstructured triangular
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Figure 1.2: A circle is surrounded by a body fitted grid on top of a Cartesian back-
ground grid.

mesh.

1.2 Structured methods

Alternatively, structured methods predictably place degrees of freedom allowing for

accurate and simple finite difference schemes, light weight cache coherent data struc-

tures and straight forward domain decomposition. Despite their lack of adaptivity,

Cartesian grids have often outperformed adaptive methods even at high resolutions

due to their simple and accurate numerical stencils as well as their regular layout

of data in memory allowing for fast traversal. Often the most effective methods are

structured methods tailored to specific problems, such as manually generated curvi-

linear grids (see e.g. [19, 15, 112, 35]) where where logically rectangular grids are

parametrically deformed to conform closely to the solid interface as illustrated in Fig-

ure 1.2. Structured methods allow for many times the number of degrees of freedom

to be used when compared to even the most efficient adaptive schemes, at the same
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Figure 1.3: A circle is discretized using block structured approaches by placing a
number of overlapping Cartesian grid patches. (Left) In AMR approaches patches are
restricted to being axis-aligned, requiring more patches to efficiently and accurately
represent the structure boundary. 29 patches are used in this case. (Right) In our
Chimera grid approach patches are allowed to be arbitrarily rotated and translated,
allowing non-axis-aligned features to be rasterized much more efficiently. Only 8
patches are required in this case.

computational cost. In order to exploit the efficiency of structured methods, au-

thors have explored directly adding adaptivity to structured discretizations through

methods such as octrees (see e.g. [70, 69, 17, 80, 88]), and adaptive mesh refinement

(AMR) (see e.g. [9, 8, 68, 3, 104, 78, 23, 86, 95, 55]). The graphics community has also

explored lattice based tetrahedral methods such as [81, 64, 18, 4]. While allowing for

similar levels of adaptivity as unstructured methods, octrees and similar hierarchical

structures suffer from the similar issues of cache coherency and domain decomposi-

tion, even if care is taken to maximize cache coherency and minimize indirections.

Block structured AMR methods allow multiple Cartesian grids to be patched upon

one another in order to allow higher resolution grids to represents parts of the domain

with fine details, while the majority of the domain is covered by a single coarse grid.

As a result AMR methods have been extremely successful due to their block Cartesian
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grid structure resulting in improved cache coherency and low cost decomposition, if

the number of patches and repatching frequency are small enough, while providing for

spatial adaptivity. In [9] grids were allowed to be both translated and rotated allow-

ing accurate tracking of solid boundaries and flow features. However, in subsequent

work (see e.g. [8]) grids were constrained to lie along the same axes and have coarse

grid lines match up with fine grid lines along patch boundaries, thus simplifying the

construction of computational stencils. In order to capture non-grid aligned features

this then forces one to either sacrifice the efficiency of the method by requiring ei-

ther the use of large fine grids to cover these features unnecessarily refining space far

away from these features, or the creation of many small grids essentially rasterizing

these features resulting in problems similar to those of hierarchical structured meth-

ods (e.g. octrees) as illustrated in Figure 1.3 (Right). Many modern AMR schemes

are fully unstructured and allow for cell-wise refinement. In this case space-filling

curves (see e.g. [2]) can be used to improve cache coherency and simplify domain

decomposition. However, they still incur a significant computational overhead when

compared to block structured approaches and can have high communication costs

when repartitioning the domain.

1.3 Overlapping grids

Overlapping grid methods (see e.g. [7, 103, 5, 6, 102, 58]) also rely upon building

adaptive discretizations by patching together independent grids. Unlike standard

AMR methods, overlapping grid methods are more general allowing for many types

of grids (such as Cartesian, curvilinear and deforming) to be rotated and moved

while being used together to decompose a single domain without explicitly construct-

ing an global mesh with regular connectivity as illustrated in Figure 1.3 (Right).

This has allowed overlapping grid methods to be extremely effective in practical

engineering applications. In fact, they were originally designed to simulate the com-

pressible transonic flow regimes around the space shuttle using the Overflow solver

[7]. Overlapping grid methods have also been combined with AMR methods allowing
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for block structured adaptivity on each component grid [47, 48, 49]. Overlapping

grid style approaches have also been explored in the graphics community (see e.g.

[92, 99, 85, 26, 107, 21, 38]). However, each previous approach has been limited

in either generality or scalability when compared to a full-blown overlapping grid

scheme.

In overlapping grid schemes, the solution on different grids is coupled by exchang-

ing boundary conditions. For explicit operations such as advection this is typically

achieved by interpolating ghost cell values from overlapping grids before running the

single grid code on each grid independently. Note that compared to certain unstruc-

tured and structured adaptive methods, this means that we perform some duplicate

computation in regions overlapped by more than one grid. However, assuming a

reasonable grading and placement of grids, for most operations the overall cost of

changing the method to avoid computing the solution in overlapped cells would ex-

ceed that of simply computing the solution throughout the entire domain. This is

exacerbated by the domain decomposition used for parallelization. Furthermore, by

operating on the entire grid we can exploit the single grid implementations of cer-

tain operations without modification, significantly reducing the implementation effort.

When implicitly solving for stiff terms such as viscous or pressure forces, this process

is typically iterated in Gauss-Seidel fashion until converged in order to strongly cou-

ple the solution. This partitioned coupling often suffers from slow convergence and

in certain cases the individual systems can even be singular as reported by [13, 50]

which can cause the solver to diverge. Certain authors (see e.g. [43, 44]) have instead

directly substituted the interpolation stencils used to fill ghost and overlapped cells

directly into the system matrix in order to exploit more robust solvers. While this

avoids many of the convergence issues of Gauss-Seidel approaches, the resulting sys-

tem is asymmetric and can be expensive to solve robustly. Despite this, many efficient

methods have developed to solve these system such as multigrid methods [46, 45] and

approximate factored schemes [53]. Coupling together overlapping grids has received

significant attention within the literature (see e.g. [90, 91]). One popular approach

to implicitly coupling grids together are cut cell methods (see e.g. [111]) which alter
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the cells on each grid by removing the parts of these cells overlapped by finer grids.

In order to build divergence operators these methods used a finite volume approach

to compute divergence. Computing the gradient at cell faces is considerably more

problematic due to the creation of faces which are not orthogonal to the line between

the pressure samples at incident cells. As a result, using the pressure difference be-

tween the samples located at incident cell centers can introduce errors which do not

vanish as the grid is refined. Deferred correction methods (see e.g. [57, 109]) apply

an iterative process in order to compute the correct pressure gradient at faces by re-

constructing the full gradient at faces using the values computed in the previous time

step or iteration. However, these methods do not guarantee the existence of a unique

solution, and as a result can be extremely slow to converge to the correct solution if

at all. [16] addressed this problem by including the stencil for reconstructing the full

gradient in the system matrix, however this results in an asymmetric and possibly

indefinite matrix with complicated stencils.

1.4 Proposed Method

We propose an overlapping grid method which combines multiple moving and arbi-

trarily oriented Cartesian grids into a single computational domain (as first described

in [29]). These grids are allowed to move both kinematically and as dynamic ele-

ments driven by the flow or attached to immersed rigid bodies. In order to couple

together the solution at grid boundaries and in overlapped regions we compute val-

ues for ghost cells and cells in overlapped regions by interpolating values from finer

overlapping grids as described in Section 2.2. In Section 3.2 we introduce both first

and second order accurate ALE advection methods built using the semi-Lagrangian

tracing of rays backwards and forwards in time in order to both avoid requiring an

expensive time step stability restriction and to remap values in a single step without

introducing additional numerical dissipation. In order to efficiently advect values and

exploit Cartesian grid data structures, our ALE advection scheme first constructs a

velocity field on each grid taking into account the grid’s motion and then applies the
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single grid advection code. Since this process relies on interpolating values from the

local grid at locations outside of each grid’s time tn and time tn+1 domains we use

a fixed number of ghost cells. This imposes a loose time step restriction based both

upon the fluid velocity and grid motion which we discuss in Section 3.3.

In order to implicitly solve for pressure and viscous forces we introduce a new spatial

discretization of the Laplacian operator in Section 4.3 where a Voronoi diagram (see

e.g. [101, 12, 84]) is used to determine the connectivity of the pressure samples and

the corresponding face areas used in the stencils along intergrid boundaries. By using

a Voronoi diagram to define the cell geometry we are guaranteed orthogonal centered

finite differences at faces, allowing us to exactly satisfy hydrostatic problems and

compute pressure values to second order accuracy. We build the Voronoi diagram by

considering pairs of cells along the intergrid boundary and computing the geometry of

the face incident to each of these pairs by clipping a candidate plane by the candidate

planes formed between nearby cell pairs. By directly computing the Voronoi diagram

we avoid the issues of robustness and efficiency associated with methods which com-

pute the Delaunay triangulation before computing the dual Voronoi diagram. We

note that while our method does not produce the complete connectivity information,

it is only necessary to compute the face areas and corresponding cell adjacency infor-

mation in order to define the stencils in our discretization. As a result our method

is robust to perturbations in the positions of degrees of freedom. Furthermore by

computing a continuous discretization as opposed to the overlapped discretizations

and coupling methods of previous overlapping grid schemes, the resulting linear sys-

tem is symmetric positive definite (SPD) allowing us to apply efficient linear solvers

such as preconditioned conjugate gradient. We apply our discretization to several

Poisson equation examples in Section 4.4. We then extend our discretization to solve

diffusion equations on the cell centers of moving grids in Section 5.1. In order to solve

for viscous forces on the staggered face velocity degrees of freedom we compute cell

center velocities and then solve a diffusion equation independently in each direction

using the cell center formulation before averaging the differences back to the original

face degrees of freedom in order to update the original staggered degrees of freedom in
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Section 5.2. In both the viscosity and pressure solves we address fluid-structure inter-

action using an immersed boundary approach by specifying the velocity at overlapped

cells and faces.

We summarize our method for single-phase incompressible flow, including interaction

with static and kinematic objects in Chapter 6.1. Numerical results are provided in

Section 6.2 including a Couette flow example demonstrating converge towards the

analytic solution, a lid driven cavity example showing similar velocity profiles and

vortex patterns as [36], an example with a two-dimensional vortex flowing from a fine

grid to a coarse grid demonstrating self convergence, a two-dimensional flow past a

stationary circular cylinder example showing the correct drag coefficients, lift coeffi-

cients and Strouhal numbers as compared to those published and cited in [54], and

a flow past a rotating elliptic cylinder example showing self convergence for the case

with a rotating solid and attached grid. We also include a more complicated example

in two dimensions with three rotating elliptic cylinders, and one three-dimensional

example with a rotating ellipsoid in order to emphasize the simplicity and feasibility

of our approach.

In Chapter 7 we extend our pressure solver to support monolithic dynamic bodies and

two-way fluid structure interaction problems. Since the exact motion of dynamics

bodies is not known when computing the time step length at the beginning of each

step, we approximate the velocity of each body when computing the time step and

dynamically adjust the number of ghost cells during advection as discussed in Section

7.1. In order to allow for two way interaction between structures and the fluid we take

the same approach as [93] by modifying our immersed boundary approach to include

both velocity compatibility constraints at fluid faces along the interface, and Lagrange

multipliers terms in the momentum update equations to enforce those constraints and

ensure momentum conservation. We demonstrate the results by encompassing a glider

with a number of grids in an extended background grid and examine its glide path

under several grid configurations in Figure 7.1.

While level sets have been successfully used to track free surfaces on a number of
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adaptive discretizations (see e.g. [104, 69, 106, 4]), special care is necessary in or-

der to avoid artifacts due to the sensitive nature of free surfaces and inconsistent

level set and velocity representations in overlapping regions. Sections 8.1 and 8.1.1

describe our approach for adapting the particle level set approach of [31] to overlap-

ping grids (as first described in [30]). On each grid we store both a level set and a

collection of particles. The level set is advected using our first order accurate ALE

semi-Lagrangian approach and reinitialized using the fast marching method indepen-

dently on each grid after filling the ghost cells. Like other level set approaches, we

reinitialize the level set and extrapolate the velocity across the free surface only in

a limited number of layers of cells along the free surface interface due to the use of

a limited reinitialization bandwidth. We address these issues by taking several ad-

ditional reinitialization and extrapolation steps when necessary. In order to render

the free surface we use a ray tracing approach in which the intersection with the free

surface is found using a root finding procedure. In order to combine the overlapping

level sets into a seamless surface, at each sample location we blend together the level

set values from each overlapping grid into a continuous function. The root finding

procedure is then directly applied to this composite function creating a smooth sur-

face. We demonstrate the final results of this dissertation, including a number of

two-way coupled free surface examples and timing information, in Section 8.3.

Overlapping grids are extremely flexible and provide a convenient way to track flow

features such as vortices and thin splashes as well as solid objects. We generally use

a large background grid as can be seen in the bottom right of Figure 8.1. This gives

a large simulation domain allowing waves to travel a long distance without hitting or

reflecting off of the domain boundaries. In addition, we place smaller and finer grids

near interesting features such as the drops and splashes in Figures 8.1 and 8.2. Note

that in Figure 8.2 the grids follow the armadillo drops to track and preserve their

shape and detail. Overlapping grids are also used to follow and track rigid objects as

can be seen in Figure 8.5. The efficacy of our approach is further illustrated in Figures

8.6, 7.1, and 8.7, which show the resolution of thin features such as the buckets of a

water wheel, the wings and tail of a glider, and the propellers on a ship.



12 CHAPTER 1. INTRODUCTION

Scalability results and a discussion of the observed issues is given in Section 9.

1.5 Contributions

• We have developed an Arbitrary-Lagrangian-Eulerian semi-Lagrangian advec-

tion scheme for moving overlapping Cartesian grids.

• We have developed a second-order-accurate symmetric-positive-definite Pois-

son equation discretization for arbitrarily translated and rotated overlapping

Cartesian grids.

• We have extended the Poisson discretization to solving diffusion equations for

both scalar and field quantities.

• Using the previous developments we have implemented a Single-phase incom-

pressible flow solver for overlapping grids.

• We have extended the incompressible flow solver to free surface flow problems.

• We have modified the pressure solver to support monolithic coupled two-way

fluid-structure interactions.



Chapter 2

Overlapping Grids

2.1 Cartesian Grids

Our Chimera grid simulation framework consists of a collection of grids that partition

the simulated domain into regions of interest as shown in Figure 2.2. In this paper we

consider only Cartesian grids undergoing rigid motion as described by a rigid frame

consisting of a translation and a rotation. We represent a rigid transformation as the

combination of a rotation using a rotation matrix, R, and a translation vector, ~s.

Using these representations we relate locations and vectors in world space to those in

a grid’s object space using the equations

~xworld = R~xobject + ~s (2.1)

~uworld = R~uobject (2.2)

Similar to other rigid body dynamics implementations we internally store the orien-

tation of each grid as a unit quaternion. However, for the purposes of this exposition

it is simpler to work with rotation matrices. In order for fine resolution grids to ex-

actly follow the motion of objects in the fluid flow, we allow grids’ rigid frames to be

pinned to the transformations of their respective rigid bodies. We also allow grids to

13
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ui− 1
2
,j

ui+ 1
2
,j

vi,j− 1
2

vi,j+ 1
2

φi,j

Figure 2.1: We store scalar fields φ at cell centers and vector fields (u, v) as scalar
components in the normal direction at each face. Note that face normal directions
are tied to the grid orientation and that when reconstructing a world space vector it
is necessary to rotate the object space vector into world space (i.e. ~uworld = R~uobject

where ~uobject = (u, v)).

be kinematically driven to follow flow features depending upon the problem.

In order to exploit existing single-grid code, our framework stores the original single-

grid data structures for each grid in its own container. For each grid, these include

a set of arrays storing values lying at cell or face centers, including quantities such

as density, pressure and velocity. Also included in this container is the structural

information for the associated grid, including the Cartesian grid parameters, (the

grid’s domain and cell counts in each dimension) as well as the grid’s rigid frame.

We represent field quantities in object space using a Marker-and-Cell (MAC) repre-

sentation [41] as illustrated in Figure 2.1. Scalar quantities are represented as cell

center samples and vector quantities are represented as a staggered arrangement of

scalar samples stored at face centers with each sample representing the component of

the vector field in the world space normal direction of the corresponding face. While

scalar field samples can be used directly since they are invariant to the orientation

of the grid, vector quantities must be rotated into world space. Thus, In order to
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construct a full velocity vector in world space, we apply the regular interpolation

scheme in the grid’s object space and then transform the vector to world space by

using Equation 2.2 to rotate the vector. This means that if a grid which was originally

aligned with the world space axes is rotated by 90 degrees, all the x-velocity MAC

grid faces would have to be switched to the y-velocity MAC grid faces–more generally,

one needs to be careful to account for the fact that the components of velocity stored

on faces change as the grid rotates (but are not affected by translation).

We note that while in certain parts of the algorithm in Sections 5 and 6 we exploit cell

centered velocities to simplify interpolation and to allow us to decouple the velocity

components during the viscous solve, the persistent velocity representation is stag-

gered. A staggered arrangement is necessary due to the centered differencing in the

gradient, divergence and Laplacian operators used in the Poisson equation discretiza-

tion. It is well known that neighboring pressures and velocities become decoupled if a

collocated velocity representation is used in combination with centered differencing.

This decoupling can lead to instability and is avoided by using a MAC representation.

2.2 Explicit Grid Coupling

While our method applies fully implicit coupling to compute the pressure and viscosity

terms across multiple grids, an explicit coupling scheme is suitable for operations that

do not involve global communication/coupling such as our semi-Lagrangian advection

scheme (noting that one could alternatively use an implicit scheme for advection in

which case a more strongly coupled approach would be necessary or that one could

solve the diffusion equation explicitly in which case an explicit coupling approach

would be sufficient). Grid coupling most naturally occurs near the exterior boundary

of a grid where computational stencils reach across the boundary and require infor-

mation available on one of the other grids. Although one could simply interpolate the

required values from the appropriate grid when evaluating numerical stencils, this ap-

proach typically leads to increased code complexity and issues with cache coherency,
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thus increasing computational cost.

Instead, in our method each grid is allocated a band of ghost cells surrounding its

domain. By filling these ghost cells with valid data from other grids that overlap

these cells as shown in Figure 2.2 (Left), we can proceed to perform operations on

each grid independent of the other grids, which is typical of block structured AMR

approaches. We regard a cell/face as overlapped by another grid if and only if it lies

inside the grid’s interpolation domain, i.e. a valid interpolation stencil exists in the

grid domain. For example, in the case of linear interpolation, a cell or face center has

to be at least a distance of ∆x/2 inside the grid domain boundaries to be considered

as overlapped by that grid–this means that it is inside the rectangle created by the

four (in two spatial dimensions, or eight in three spatial dimensions) neighboring cell

centers on the grid that we are interpolating from (although we have not implemented

it, in the special case of aligned grids, this ∆x/2 restriction can be relaxed for face

centers in the dimension parallel to the face normal). When multiple grids overlap a

given ghost cell, we always interpolate from the finest overlapping grid (see Figure 2.2

(Left)). The number of ghost cells for each grid is determined by considering both the

stencils used by the operators being applied to each grid, and the relative motions of

the grids. The method for deciding the number of ghost cells is detailed in Section 3.3.

While the use of ghost cells and an appropriate time step restriction provides each

grid with access to all the values they need to evaluate numerical stencils, tests showed

that values on the interiors of overlapped grid regions could tend to gradually drift

apart. Moreover, in the case of a fine grid completely contained within a coarse

grid, the values calculated on the overlapping fine grid would never feed back into

the coarse grid, unless the fine grid is moved to overlap the ghost cells of the coarse

grid. We resolve this issue by replacing the value of every overlapped coarse cell by

a value interpolated from a finer grid that overlaps it (using the finest grid possible),

as shown in Figure 2.2 (Right). Note that this can incur a large communication cost

when using MPI which can be resolved without affecting the solution by only filling

a band of these cells near non-overlapped cells (see Figure 2.3) as is done in typical

Chimera grid methods. When filling overlapped cells, the order in which the grids are
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Figure 2.2: The explicit grid coupling between two partially overlapping grids (red
and green) and a blue background grid. The green grid is finer than the red grid, and
the blue grid is the coarsest. For clarity, each grid has only one layer of ghost cells
in this example. (Left) Ghost cells are filled with values interpolated from the finest
overlapping grid with a valid interpolation stencil. The dotted cells are the ghost cells
of the grids. The color of each dot indicates which grid its value is interpolated from.
The blue background grid’s ghost cells (marked with gray squares) have no data to
interpolate from, thus will be filled according to the boundary condition. (Right)
Overlapped interior cells are filled with values interpolated from a finer grid. Note
that we fill grids from fine to coarse and use the finest grid with a valid interpolation
stencil when interpolating values. The dotted cells are overlapped by finer grids. The
color of each dot indicates which grid its value is interpolated from, and the fill color
of a cell helps clarify which grid the cell belongs to.

filled affects the final outcome since we use the most recent values when interpolating.

Hence, we fill grids from fine to coarse as illustrated in Figure 2.2 (Right).
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Figure 2.3: Illustration of the lower-dimensional layer of overlapped cells. A fine red
grid is shown overlapping a coarse blue grid. In this example, we only fill the shaded
blue grid cells with data from the red grid and otherwise ignore the hollowed out
interior region of the blue grid. Based on the stencils used to update the blue grid as
well as the subsequent motion of the red grid, one can specify how large of an interior
region can be hollowed out to reduce the communication from the red grid to the blue
grid down to a lower-dimensional set for the purpose of communication optimization
while still providing all the relevant data from the red to the blue grid.



2.3. PARALLELIZATION 19

0 1

2

3

4

5 6
7

8
9

10
11

Figure 2.4: Grids are split into subgrids and assigned to multiple processors. Grids
with the same color correspond to a single grid before splitting. The number on each
subgrid indicates the index of the corresponding processor.

2.3 Parallelization

Once the ghost cells on each grid have been filled, the explicit operation can be

performed on each grid independent of other grids. This makes it feasible to parallelize

our algorithm using MPI by assigning each grid and its associated data container to

a distinct processor, where the communication between processors is only necessary

when filling ghost cells and filling overlapped regions. While data is distributed and

consequently each grid’s associated data container is only visible to one processor,

the structural information (rigid body frames, domain sizes and cell sizes) for all the

grids is stored identically in every process. This redundantly stored information is very

lightweight and adds only a negligible increase in memory. However, it conveniently

informs every process of the entire domain decomposition so that each processor can

readily decide which other processes it sends to and receives from.

In order to make full use of computational resources, our software takes an approach

similar to that used in [49] and implements a procedure to split grids in order to

balance the number of spatial degrees of freedom in each process. One example of

how grids are split is given in Figure 2.4. Each of the 12 subgrids in Figure 2.4 behaves
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the same as a standalone grid except for the following differences. The ghost cells

along splitting boundaries between subgrids are filled first using simple injection as

opposed to interpolation, noting that simple injection (as opposed to interpolation) is

sufficient since the ghost cells are collocated with real cells from the adjacent subgrids.

This means that each of the black, red and blue composite grids in Figure 2.4 will

first sync up among its own subgrids. After that the algorithm can proceed as if no

grid splitting took place, instead only dealing with the composite black, red and blue

grids. One caveat is that when interpolating from a grid that is divided into subgrids,

a cell that lies near the subgrid boundaries could interpolate from any of the adjacent

subgrids–however one obtains the same answer regardless of which subgrid is used.



Chapter 3

Generalized Semi-Lagrangian

Advection

We consider both first order accurate semi-Lagrangian advection as well as second

order accurate semi-Lagrangian style MacCormack (SL-MacCormack) advection as

introduced in [97]. We have chosen to apply these method-of-characteristics type

approaches to exploit their unconditional stability in order to avoid the strict time

step restrictions which can be imposed by very small cells on fine grids. The coupling

between grids has been addressed in Section 2.2 allowing advection to be performed

independently on each grid. In order to account for the effect of each grid’s motion

while exploiting existing single-grid implementations, we have implemented a wrapper

function which transforms the velocities, used to advect values, from world space to

each grid’s object space. This is detailed in Section 3.2.

3.1 Semi-Lagrangian MacCormack Advection

Before presenting our Chimera grid advection approach we discuss a few aspects of

the SL-MacCormack method of [97], in order to clarify a few important details not

21
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discussed in the original work. We consider the advection equation

∂φ

∂t
+ ~u · ∇φ = 0 (3.1)

where φ is a scalar quantity and ~u is a divergence free velocity field. In first order

accurate semi-Lagrangian advection, characteristic paths are traced backwards in time

to find locations from which to interpolate new values. Equation 3.1 is discretized

using this approach as follows:

φn+1(~x) = φn(~x−∆t~un(~x)) (3.2)

where φn+1 are the updated time tn+1 values, φn are the time tn values, and ~u is the

velocity field.

The SL-MacCormack method is then built using this first order accurate scheme to

advect values forward and backward in time during each time step in order to estimate

the advection error. It is assumed that in both of these steps, approximately the

same error is added to the resulting values. Thus, we advect the time tn values φn(~x)

forward in time to obtain the temporary forward advected values as follows:

φ̂n+1(~x) = φn(~x−∆t~un(~x)) (3.3)

These values are then advected backward in time as follows:

φ̂n(~x) = φ̂n+1(~x+ ∆t~un(~x)) (3.4)

Subsequently, the advection error is approximated and the final solution is computed

as follows:

E(~x) = (φ̂n(~x)− φn(~x))/2 (3.5)

φn+1(~x) = φ̂n+1(~x)− E(~x) (3.6)

where E(~x) is the error and φn+1(~x) is the final solution.
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Whereas [97] only considered time-constant velocity fields in their precise analysis of

the method, we consider time-varying velocity fields. First consider an initial circular

bump function

φ(~x) =

e
(

2− 2
1−(‖~x−~xc‖/r)2

)
if ‖~x− ~xc‖ < r

0 if ‖~x− ~xc‖ ≥ r
(3.7)

where ~xc = (0, .5) is the center of the bump and r = .45 is the radius of the bump.

Then a single time-varying vortex velocity field defined by the stream function

Ψ(x, y) =
2

π
sin2

(
π
x− 1

2

)
sin2

(
π
y − 1

2

)
, (x, y) ∈ [−1, 1]× [−1, 1] (3.8)

is time-modulated by cos(πt/8) so that analytically the bump function will be twisted

to its maximum extent at t = 4 and returned to its exact initial value at t = 8. We

define the error norms as L1({e1, ..., en}) =
n∑
i=1

|ei| and L∞({e1, ..., en}) = max
i∈[1,n]

|ei|

where ei is the error at the ith grid location. Note that these definitions for the L1

and L∞ norms are applied to a number of error measurements throughout the rest

of the dissertation. The order of accuracy is computed using three successive grids

and plotted against time in Figure 3.1 (Top) for Equations 3.3-3.6. Note that in the

second half of the graph the solution drops to first order accuracy and worsens under

refinement. Instead, second order accuracy is obtained by modifying Equations 3.3

and 3.4 to use velocities at time tn+1/2 as shown in Figure 3.1 (Middle) but not by

using velocities at time tn (which was not pointed out in [97]). To clarify that this is

a temporal error, Figure 3.1 (Bottom) uses a fixed ∆t for all grids emphasizing that

time tn velocities still lead to second order accuracy in space. In practical simulations,

although the velocity field at time tn+1/2 is unknown when advecting from time tn to

time tn+1, the spatial errors are often larger than the temporal errors, which implies

that using time tn velocities will often be satisfactory in practice.

We now perform a one-dimensional accuracy analysis to show that using time tn+1/2

velocities achieves second order accuracy. Consider the one-dimensional version of
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Figure 3.1: The order of accuracy of a time-varying single vortex test in two spatial
dimensions with the SL-MacCormack method. (Top) uses velocities at time tn for
advection and a fixed CFL number. (Middle) uses velocities at time tn+1/2 for advec-
tion and a fixed CFL number. (Bottom) uses velocities at time tn for advection and
fixes ∆t to the value used on a 4096-point grid.
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Equation 3.1 as follows:

∂φ

∂t
+ u(x, t)

∂φ

∂x
= 0 (3.9)

Assuming a positive velocity and a CFL less than one, we discretize Equation 3.9

using forward Euler in time and upwinding in space to get the forward advection step

as follows:

φ̂n+1
i = φni +

∆t

∆x
u
n+1/2
i (φni−1 − φni )

Similarly, the backward advection step can be discretized as

φ̂ni = φ̂n+1
i +

∆t

∆x
u
n+1/2
i (φ̂n+1

i+1 − φ̂n+1
i )

Then the final solution of the SL-MacCormack advection is

φn+1
i = φ̂n+1

i − (φ̂ni − φni )/2

= φni −
∆t

∆x
u
n+1/2
i (

φni+1 − φni−1

2
) +

∆t2

2∆x2
((u

n+1/2
i )2(φni−1 − φni ) + u

n+1/2
i u

n+1/2
i+1 (φni+1 − φni ))

(3.10)

In order to eliminate the reference to u
n+1/2
i+1 we substitute u

n+1/2
i+1 = u

n+1/2
i +∆x

∂u
n+1/2
i

∂x
+

O(∆x2) into Equation 3.10 and after simplification we get

φn+1
i =φni −

∆t

∆x
u
n+1/2
i (

φni+1 − φni−1

2
) +

∆t2

2∆x2
((u

n+1/2
i )2(φni+1 − 2φni + φni−1)

+ u
n+1/2
i (∆x

∂u
n+1/2
i

∂x
+O(∆x2))(φni+1 − φni )) (3.11)

We further simplify Equation 3.11 by substituting
φni+1−φni−1

2∆x
=

∂φni
∂x

+O(∆x2),
φni+1−2φni +φni−1

∆x2
=

∂2φni
∂2x

+ O(∆x2), and
φni+1−φni

∆x
=

∂φni
∂x

+ O(∆x) which results in the final expression for
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the MacCormack update as follows:

φn+1
i =φni −∆tu

n+1/2
i

∂φni
∂x

+
∆t2

2
((u

n+1/2
i )2∂

2φni
∂x2

+ u
n+1/2
i

∂u
n+1/2
i

∂x

∂φni
∂x

)

+O(∆t2∆x+ ∆t∆x2 + ∆t2∆x2) (3.12)

In order to show second order accuracy we next compute a Taylor expansion for φn+1
i

in time with respect to φni and then use Equation 3.9 and the chain rule in order to

exchange temporal and spatial derivatives as follows:

φn+1
i =φni + ∆t

∂φni
∂t

+
∆t2

2

∂2φni
∂t2

+O(∆t3)

=φni −∆tuni
∂φni
∂x

+
∆t2

2
(−∂u

n
i

∂t

∂φni
∂x

+ (uni )2∂
2φni
∂x2

+ uni
∂uni
∂x

∂φni
∂x

) +O(∆t3)

(3.13)

Finally we substitute the Taylor expansions u
n+1/2
i = uni + ∆t

2
∂un

∂t
+O(∆t2) and

∂uni
∂x

=
∂u

n+1/2
i

∂x
+O(∆t) into Equation 3.13 as follows

φn+1
i =φni −∆t(u

n+1/2
i − ∆t

2

∂un

∂t
)
∂φni
∂x

+
∆t2

2
(−∂u

n
i

∂t

∂φni
∂x

+ (u
n+1/2
i )2∂

2φni
∂x2

+ u
n+1/2
i

∂u
n+1/2
i

∂x

∂φni
∂x

) +O(∆t3)

=φni −∆tu
n+1/2
i

∂φni
∂x

+
∆t2

2
((u

n+1/2
i )2∂

2φni
∂x2

+ u
n+1/2
i

∂u
n+1/2
i

∂x

∂φni
∂x

) +O(∆t3)

(3.14)

By comparing Equation 3.12 and Equation 3.14, it can be seen that the difference

between the numerical solution and the exact solution is on the order of O(∆t3 +

∆t2∆x + ∆t∆x2). Therefore, the numerical solution obtained by using time tn+1/2

velocities in SL-MacCormack advection is second order accurate. Through similar

derivations, it is easy to show that either using time tn or time tn+1 velocities, the

dominant error term is on the order of O(∆t2), leading to first order accuracy in time.
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3.2 Chimera Advection Scheme

3.2.1 First Order Semi-Lagrangian Scheme

After filling ghost cells and overlapping regions as discussed in Section 2.2, we update

each interior point ~xobject of each grid as follows. The standard first order accurate

semi-Lagrangian update for a world space location ~xworld (the blue dot in Figure 3.2

(Top)) on a stationary grid traces backwards along the characteristic ray defined by

the time tn velocity interpolated at ~xworld and interpolates an updated value at the

lookup location (the green triangle in Figure 3.2 (Top)) as follows:

φn+1
world(~xworld) = φnworld(~xworld −∆t~unworld(~xworld)) (3.15)

where φn+1
world, φnworld and ~unworld are parameterized by world space locations. In order to

allow for grid motion we replace the world space values with the appropriate object

space values transformed into world space. Since the grid is moving, we need to first

determine where the point ~xobject will be at time tn+1. This corresponds to ~xn+1
world as

follows:

~xn+1
world = Rn+1~xobject + ~sn+1

where Rn+1 and ~sn+1 are the grid’s time tn+1 rotation and translation respectively.

Since the velocity field ~un is stored in time tn object space we translate ~xn+1
world into

time tn object space as ~xnew = (Rn)−1(~xn+1
world−~sn). Unlike standard semi-Lagrangian

advection, ~xnew is typically not a grid point and therefore one must interpolate a

velocity ~unfluid = ~un(~xnew). We then rotate this velocity back into world space giving

the characteristic velocity as follows:

~unworld = Rn~unfluid

Since φn is stored in object space, after computing the world space lookup location

(the green triangle in Figure 3.2 (Top)) of the characteristic ray we transform this
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Figure 3.2: An illustration of our ALE advection in the world space for the point
~xobject that moves from ~xnworld (shown as the red point) to ~xn+1

world (shown as the blue
point) according to the grid motion. (Top) Forward advection. (Left) Backward
advection for SL-MacCormack.
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location into time tn object space and interpolate the final value. Thus we arrive at

the updated semi-Lagrangian advection formula for moving grids as follows:

φn+1(~xobject) = φn((Rn)−1(~xn+1
world −∆t~uworld − ~sn))

= φn(~xobject −∆t(~unfluid − (Rn)−1~ugrid)) (3.16)

where φn+1
world(~xn+1

world) is equivalently replaced by φn+1(~xobject). Additionally, the effec-

tive velocity of the grid location being updated is defined as ~ugrid = (~xn+1
world−~xnworld)/∆t

where xnworld = Rn~xobject +~sn. Since we want to apply the single grid advection code,

we simplify this formula as follows:

φn+1(~xobject) = φn(~xobject −∆t~uneffective) (3.17)

where ~uneffective = ~unfluid − (Rn)−1~ugrid. Note that Equation 3.17 traces the same world

space characteristics as Equation 3.15 as shown in Figure 3.2 (Top).

When updating the velocities themselves, the scheme is a bit more complicated due to

the rotation of grids’ basis vectors. We approach this by first computing a full velocity

vector on each MAC grid face by applying semi-Lagrangian advection to both of the

coordinate directions at this face location and premultiplying this advected velocity

vector by (Rn+1)−1Rn to get the correct scalar components for the time tn+1 grid

coordinate directions as follows:

~ufull = (Rn+1)−1Rn~un(~xobject −∆t~uneffective) (3.18)

We then compute the final component value as un+1(~xobject) = ufull or vn+1(~xobject) =

vfull depending upon the component of the velocity field stored at the face at ~xobject.

3.2.2 Semi-Lagrangian MacCormack Advection Scheme

The first step of SL-MacCormack advection is identical to the first order accurate

semi-Lagrangian advection and results in the scalar field φ̂n+1. In the second step,
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we fill the ghost cells of φ̂n+1 and then advect these values backwards in time with

the grid motion and fluid velocity reversed. The standard backward advection step

in MacCormack advection for a stationary grid using world space values is as follows:

φ̂nworld(~xworld) = φ̂n+1
world(~xworld + ∆t~unworld(~xworld)) (3.19)

Following a similar derivation as that used to derive Equation 3.16, by substituting

object space values transformed to world space into Equation 3.19, we arrive at the

backward advection step for moving grids as follows:

φ̂n(~xobject) = φ̂n+1((Rn+1)−1(~xnworld + ∆tRn~ufluid,back − ~sn))

= φ̂n+1(~xobject + ∆t(Rn+1)−1(Rn~ufluid,back − ~ugrid)) (3.20)

where ~ufluid,back = ~un(~xobject). Note that conveniently, the fluid velocity at time tn is

already defined at the destination (which is a grid point) by standard averaging and

does not need to be interpolated as it does in the first semi-Lagrangian advection

step. (Note that if we were using the fluid velocity at time tn+1 that ~ufluid,back would

not be defined at the point ~xnworld and interpolation will be required similar to the

treatment of ~xnew in the semi-Lagrangian case.) Once again since we want to apply

the single grid advection code, we simplify Equation 3.20 as follows:

φ̂n(~xobject) = φ̂n+1(~xnobject + ∆t~ueffective,back) (3.21)

where ~ueffective,back = (Rn+1)−1(Rn~ufluid,back− ~ugrid) is the effective velocity. Note that

Equation 3.21 traces the same characteristics as Equation 3.19 as illustrated in Figure

3.2 (Bottom).

Once both the forward and backward advection steps have been performed, we again

fill the ghost cells of the backward advection results φ̂n and then use Equation 3.5 to

compute the error estimate

E(~xobject) = (φ̂n(~xobject)− φn(~xobject))/2
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at each grid point in the usual manner. However, note that the values of E(~xobject)

correspond to time tn world space locations of the grid points ~xobject, and the results

from the first semi-Lagrangian step φ̂n+1(~xobject) correspond to time tn+1 world space

locations of ~xobject. Thus, in order to compute the correct error correction at ~xn+1
world,

one needs to interpolate the error E at the location ~xnew, i.e.

φn+1(~xobject) = φ̂n+1(~xobject)− E(~xnew) (3.22)

When updating a velocity field, the backward advection step advects a full velocity

vector for each face, premultiplies the resulting full velocity vector by (Rn)−1Rn+1,

and then takes the appropriate component depending on the face being considered–

just as it was done in the forward advection step. The error is then computed for each

face in their time tn world space locations, obtaining two different error fields, Eu and

Ev. The vector error at ~xnew is then calculated as ~E(~xnew) = (Eu(~xnew), Ev(~xnew))T via

interpolation. Finally, in order to obtain the scalar error correction for Equation 3.22,

one premultiplies ~E(~xnew) by (Rn+1)−1Rn and takes the appropriate component cor-

responding to the face direction being considered.
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Ωn+1
world

Ωn
world

Ω̂n
world,α

Ω̂n
world,αgrid

Ωn+1
world

Ωn
world

Ω̂n+1
world,α

Ω̂n+1
world,αgrid

Figure 3.3: Illustration of the relation between the time step size and ghost cells.
(Left) Forward advection. (Right) Backward advection for SL-MacCormack. The
inner dashed boxes are the ghost domains bounding the grid motion—that is, the
blue solid box should be completely inside the inner dashed red box, and in SL-
MacCormack advection the red solid box also needs to be inside the inner blue dashed
box. The outer dashed boxes are the ghost domains bounding the potential lookup
points containing the values to be advected.

3.3 Time Step Size and Ghost Cells

For a Cartesian grid we define the object space domain as Ωobject = [a, b]× [c, d] and

the larger domain which contains the ghost cells as Ωobject,αgrid
= [a − αgrid∆x, b +

αgrid∆x] × [c − αgrid∆y, d + αgrid∆y] where αgrid is the number of ghost cells. We

then define the time tn and tn+1 world space domains for Ωobject and Ωobject,αgrid
as

Ωn
world, Ωn

world,αgrid
, Ωn+1

world and Ωn+1
world,αgrid

. When carrying out the semi-Lagrangian

advection as discussed in Section 3.2 one needs to interpolate ~unfluid at every ~xnew

location, which means that Ωn+1
world ⊆ Ωn

world,αgrid
so that a valid time tn velocity can be

interpolated from the Ωn
world,αgrid

grid for every degree of freedom in Ωn+1
world that needs

to be advected. In fact, to obtain a valid interpolation stencil on a staggered MAC

grid one actually needs to shrink Ωobject,αgrid
by half a grid cell in every dimension

obtaining Ω̂object,αgrid
, and enforce that Ωn+1

world ⊆ Ω̂n
world,αgrid

, see Figure 3.3 (Left).

Given a prescribed grid motion and a time step ∆t, one could calculate the number of
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ghost cells αgrid required to enforce this subset condition. However, this requires either

reallocating ghost cells each time step which leads to cache coherency issues and high

communication costs in MPI, or preallocating a sufficiently large number of ghost

cells and using a subset of them which also poses issues due to inordinate memory

allocation. Therefore, we instead fix the number of ghost cells and limit the time step

∆t. Note that this strategy rules out the ability of grids to discontinuously change in

position by an arbitrarily large distance, because in that case a grid could move by

a distance larger than the ghost region even if ∆t is arbitrarily small. Therefore we

require grids to have a bounded velocity. We note that in this case while a smaller

∆t still does not necessarily lead to less grid motion (e.g. a grid in one-dimension

with position x(t) = sin(t) has a larger displacement at t = π/2 than t = π), that a

bounded velocity does guarantee that a grids displacement over a time step tends to

zero as ∆t does–guaranteeing that a ∆t always exists such that Ωn+1
world ⊆ Ωn

world,αgrid
.

It is inexpensive to check whether a rectangular domain lies within another rectangu-

lar domain, since it is only necessary to check if the four corners of the first domain

lie within the second domain. This is a very light O(1) computation compared to the

O(n2) number of grid points on which advection is performed. Therefore, in order to

maximize the allowable time step, ∆t should be chosen as large as possible, implying

that at least one of the four corners of Ωn+1
world would lie exactly on the boundary of

Ω̂n
world,αgrid

. This minimizes the total computation time by minimizing the number of

time steps taken. Although various strategies exist to linearize and approximate ∆t,

a simple bisection procedure is also sufficient. This process is carried out for each grid

and the minimum ∆t over all grids taken as ∆tgrid. Note that because grids can move

further in shorter time steps, using ∆tgrid for every grid could result in one of the grids

moving outside of its respective Ω̂n
world,αgrid

domain. Therefore, this condition needs

to be checked at ∆tgrid for all grids, and if invalid for any grid one can recompute the

bisection for that grid in the interval (0,∆tgrid] and then clamp all grids to this new

value, repeating the process—which is guaranteed to converge as stated above.

Next, for each degree of freedom and corresponding location ~xnew, one traces back

along the fluid characteristic to interpolate a value at a point in object space ~xlookup =
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~xobject−∆t~ueffective. We therefore use the final number of ghost cells α = αgrid +αfluid,

and its corresponding domain, Ω̂object,α, which is reduced by half a grid cell in every

spatial dimension. The extra αfluid ghost cells allow for tracing the fluid velocity

characteristic backwards to find time tn values of the advected quantity which lie

outside of Ω̂n
world,αgrid

. Note that values of ~unfluid will be interpolated at the degrees of

freedom inside Ωn+1
world which are contained within Ω̂n

world,αgrid
. Therefore for every fluid

velocity in Ω̂n
world,αgrid

(which includes ghost cell velocities) we need to ensure that the

time step is small enough such that the world space position of ~xlookup does not lie

outside Ω̂n
world,α. We satisfy this with the following CFL condition

∆tfluid ≤ αfluid
min(∆x,∆y)

max|~unfluid|
(3.23)

for every point ~xnew in Ω̂n
world,αgrid

. As we use bilinear interpolation to compute ~unfluid

at these points, we can more conveniently apply Equation 3.23 instead for every grid

point of Ω̂n
world,αgrid

.

Although we have allowed for two regions of ghost cells defined by αgrid and αfluid to

account for both the motion of the grid and fluid separately, it is not sufficient to take

the minimum of ∆tgrid and ∆tfluid, because as mentioned above, shrinking ∆t may

lead to larger grid motion. Therefore we first determine ∆tfluid and then compute a

valid ∆tgrid within the interval (0,∆tfluid].

In the case of SL-MacCormack advection, the forward advection step proceeds as

in the first order accurate semi-Lagrangian case, and then for backward advection,

we define the ghost cell domains Ω̂n+1
world,αgrid

and Ω̂n+1
world,α similar to as was done for

forward advection (see Figure 3.3 Right). While values of ~unfluid,back do not need

to be interpolated as discussed in Section 3.2, it is necessary to ensure that the

destination of the characteristic path, the world space position of ~xlookup,back = ~xobject−
∆t~ueffective,back, lies inside Ω̂n+1

world,α. Since we are using the time tn velocities ~unfluid,back for

backward advection, ∆tfluid is sufficient to guarantee this as long as Ωn
world lies within

Ω̂n+1
world,αgrid

. It turns out that the ∆tgrid which guarantees that Ωn+1
world ⊆ Ω̂n

world,αgrid
does

not also necessarily guarantee that Ωn
world ⊆ Ω̂n+1

world,αgrid
. Therefore after determining



3.4. NUMERICAL RESULTS 35

Figure 3.4: Illustration of motion of the grids. The background grid has no rotation
or translation, while the fine grid spins and translates along a straight line inside the
domain of the background grid.

∆tfluid, we use our search algorithm to find a ∆tgrid in the interval (0,∆tfluid] which

guarantees both Ωn+1
world ⊆ Ω̂n

world,αgrid
and Ωn

world ⊆ Ω̂n+1
world,αgrid

for all grids (before

taking a time step).

3.4 Numerical Results

In order to examine the convergence of our Chimera advection schemes we have im-

plemented three convergence tests which consider the same grid configuration applied

to three different velocity fields. The domain consists of a coarse background grid

that has no rotation or translation, and a fine grid which is rotating and translat-

ing inside the coarse grid’s domain. The world space domain of the coarse grid is

[−1, 1]× [−1, 1], while the fine grid’s object space domain is [−.25, .45]× [−.25, .45].

The fine grid is kinematically driven with the position ~s(t) = (−.3, .2) cos( t
2π

), and

orientation θ(t) = t
6π

–that is, the fine grid spins and translates along a straight line
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Figure 3.5: Snapshots of a simulation that advects a circular bump in a constant
uniform velocity field. The circles shown in the figure are contours of the bump
function. (Left) The snapshot at t = 0. (Middle) The snapshot at t = 1. (Right) The
snapshot at t = 3.

from top left to bottom right, see Figure 3.4. The cell size of the fine grid is half that

of the coarse grid, doubling the resolution of the area covered by the fine grid. In

each of the tests we set αgrid = 2 and αfluid = 1, and the number of ghost cells equal

to 3. The initial density field in each test is the bump function defined in Equation

3.7 with different initial positions and radii specified below.

The first test advects the density field through a constant uniform velocity field.

Snapshots of the simulation are given in Figure 3.5. The initial position of the bump

is (−.75, .4) and the radius is r = .2. The uniform velocity field is ~u = (
√

3/4,−1/4).

The results in Figure 3.6 show that both the ALE semi-Lagrangian and ALE SL-

MacCormack methods converge to the analytic solution. Note that in Figure 3.6, the

plateau regions where the errors grow more slowly correspond to the times when the

density field is primarily in the fine grid. The orders of accuracy for both methods

are shown in Table 3.1.
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Figure 3.6: The L1 norm error of the numerical solutions as a function of time in
the constant uniform velocity test. (Top) The results of our ALE semi-Lagrangian
method. (Bottom) The results of our ALE SL-MacCormack method.

SL (time=3.0) SL-MC (time=3.0)
n L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order
128 5.90× 10−3 – 4.26× 10−1 – 1.96× 10−3 – 1.22× 10−1 –
256 3.58× 10−3 0.72 2.50× 10−1 0.77 5.88× 10−4 1.74 4.53× 10−2 1.43
512 2.00× 10−3 0.84 1.32× 10−1 0.92 1.61× 10−4 1.87 1.88× 10−2 1.27
1024 1.09× 10−3 0.87 6.90× 10−2 0.94 4.04× 10−5 1.99 6.45× 10−3 1.54
2048 5.74× 10−4 0.93 4.07× 10−2 0.76 9.72× 10−6 2.05 1.86× 10−3 1.79

Table 3.1: The order of accuracy of our ALE semi-Lagrangian (SL) and SL-
MacCormack (SL-MC) methods on the constant uniform velocity test. n is the
number of points along each axis on each grid.
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Figure 3.7: The L1 norm errors of the numerical solutions as a function of time in the
constant single vortex test. (Top) The results of our ALE semi-Lagrangian method.
(Bottom) The results of our ALE SL-MacCormack method.

SL SL-MC
n L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order
128 1.63× 10−2 – 5.81× 10−1 – 4.16× 10−3 – 1.40× 10−1 –
256 1.08× 10−2 0.59 3.91× 10−1 0.57 1.24× 10−3 1.74 5.58× 10−2 1.32
512 6.58× 10−3 0.72 2.29× 10−1 0.77 3.30× 10−4 1.92 1.86× 10−2 1.59
1024 3.77× 10−3 0.80 1.24× 10−1 0.89 8.39× 10−5 1.98 5.02× 10−3 1.89
2048 2.06× 10−3 0.87 6.40× 10−2 0.95 2.04× 10−5 2.04 1.42× 10−3 1.82

Table 3.2: The order of accuracy of our ALE semi-Lagrangian (SL) and SL-
MacCormack (SL-MC) methods on the constant single vortex test when the bump
has been rotated for one cycle. n is the number of points along each axis on each
grid.

The second test advects the density field through a constant single vortex velocity

field. The initial position of the bump is (0, .5) and the radius is r = .3. The velocity

field function is given by ~u(x, y) = 12π
25

(−y, x). The L1 norm errors of different reso-

lution simulations are plotted in Figure 3.7, and the orders of accuracy are calculated

when the field is rotated exactly one cycle, see Table 3.2.

The third test we ran was the time-varying single vortex example as used in the single

grid test from Section 3.1. To calculate the errors and the orders of accuracy, the

results from the 16384-point-resolution simulation performed on a single grid are used

in this test as the ground truth, allowing us to show that the single grid simulations

and the two-moving-grid simulations converge to the same solution. Figure 3.9 shows
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Figure 3.8: The L1 norm error of the numerical solutions as a function of time in
the time-varying single vortex test. (Top) The results of our ALE semi-Lagrangian
method. (Bottom) The results of our ALE SL-MacCormack method.

that the ALE SL-MacCormack method achieves second order accuracy using time

tn+1/2 velocities for advection, while the ALE semi-Lagrangian method is near first

order accurate. The L1 norm error plot in Figure 3.8 shows that in tests using the

ALE SL-MacCormack method the errors start to decrease at t = 4. This is because

the errors of each time step in numerical simulations are signed errors, which may

either cancel or accumulate when summed up in time. In this test, the velocity field is

antisymmetric with respect with t = 4, making some error terms in SL-MacCormack

advection also antisymmetric and being able to cancel. However, the errors of tests

using the semi-Lagrangian method continues to increase in time after t = 4 because

the semi-Lagrangian advection operator is not symmetric either in space or in time.
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Figure 3.9: The order of accuracy of the time-varying single vortex test.(Top) The
order of accuracy based on L1 norm of errors. (Bottom) The order of accuracy based
on L∞ norm of the errors.



Chapter 4

SPD Poisson Equation

Discretization

4.1 Poisson Equation

With an eye towards incompressible flow presented in section 6, we first consider the

Poisson equation:

∇ · β(~x)∇φ(~x) = f(~x), ~x ∈ Ω (4.1)

φ(~x) = g(~x), ~x ∈ ∂ΩD (4.2)

~n(~x) · ∇φ(~x) = h(~x), ~x ∈ ∂ΩN (4.3)

where ~n is the outward pointing normal to the boundary, Ω is the computational

domain, and ∂ΩD and ∂ΩN are the portions of the boundary on which Dirichlet and

Neumann boundary conditions are enforced, respectively. For simplicity of presenta-

tion, we take β equal to one noting that nothing about our method prevents it from

being straightforward to extend to a variable β.

41
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∂Ωb

∂Ωr

Figure 4.1: For fully overlapping grids one must omit a number of grid cells in the
interior in order to provide boundaries for the application of boundary conditions, in
this case creating an interior boundary, ∂Ωb, on the blue grid to receive information
from the red grid. For partially overlapping grids one may omit cells for the sake of
efficiency, but it is not always necessary in order to create a boundary on which one
can prescribe coupling as in the case for fully overlapping grids. The black boundaries
of both grids, ∂Ωb and ∂Ωr, are locations on which Neumann boundary conditions
would be applied and the dotted cells of both grids are locations on which Dirichlet
boundary conditions would be applied.

4.2 Overlapping Grid Solvers

We begin with an overview of the general approach used for solving Poisson equations

on overlapping grids. Both for the sake of computational efficiency and to facilitate

the application of boundary conditions, one typically removes a number of cells in the

overlapping region between grids as shown in Figure 4.1. Although Figure 4.1 shows

one grid completely enclosed within another, we note that cells are still removed

when grids are only partially overlapped. In that case it is primarily performed

for efficiency. When deciding which cells to remove, it is necessary to allow for a

large enough overlap such that valid interpolation stencils exist for nodes on which

the boundary conditions are specified. However, it is also important to minimize
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this overlap in order to prevent the solutions within these overlapping regions from

drifting apart. See [19] for further discussion of these aspects of grid generation.

In order to enforce either Dirichlet or Neumann boundary conditions along intergrid

boundaries, operators which compute values for ghost nodes by interpolating from

non-ghost nodes on other overlapping grids are substituted into the equations. With

these substitutions we arrive at the following discretized versions of Equations 4.1-4.3

for two overlapping grids:

D1 (G1φ1 + G1gJ1,2φ2 + H1,2G2φ2) = f1 −D1

(
G1dφ1d +

∂φ1n

∂~n

)
(4.4)

D2 (G2φ2 + G2gJ2,1φ1 + H2,1G1φ1) = f2 −D2

(
G2dφ2d +

∂φ2n

∂~n

)
(4.5)

where φ1 and φ2 are the discrete values of φ located at non-ghost cells on grids 1 and

2 respectively, f1 and f2 are the discrete values of the right hand side of Equation 4.1,
∂φ1n
∂~n

and ∂φ2n
∂~n

are the Neumann boundary conditions on grids 1 and 2 respectively as

specified in Equation 4.3, and φ1d and φ2d are the Dirichlet conditions on grids 1 and

2 respectively as specified in Equation 4.2. D1 and D2 are the divergence operators,

G1 and G2 are the terms from the gradient operators corresponding to non-ghost

cells, G1g and G2g are the terms from the gradient operator corresponding to ghost

cells, and G1d and G2d are the terms from the gradient operator corresponding to the

Dirichlet boundary conditions on the computational domain as specified in Equation

4.2. J1,2 interpolates values of φ from non-ghost cells on grid 2 to ghost cells on grid 1,

and similarly J2,1 interpolates values of φ from non-ghost cells on grid 1 to ghost cells

on grid 2. H1,2 interpolates discretized values of the gradient of φ2 from non-ghost

faces on grid 2 to ghost faces on grid 1, and similarly H2,1 interpolates discretized

values of the gradient of φ1 from non-ghost faces on grid 1 to ghost faces on grid 2.

In general D1, D2, G1, G2, G1d and G2d are defined using the same stencils as would

be used for single grids (e.g. using the composite finite difference discretization and

deformation Jacobian in the case of curvilinear grids). The interpolation operators

J1,2, J2,1, H1,2 and H2,1 are dependent upon the desired order of the scheme (e.g.
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φ1
1 φ1

2 φ1
3

φ2
1 φ2

2 φ2
3

grid 1

grid 2

Figure 4.2: In one dimension, two grids overlap by 3 cells with the cell centered
solution variables φ1

1, φ1
2 and φ1

3 on the grid 1 and φ2
1, φ2

2 and φ2
3 on the grid 2. In this

case φ1
3 and φ2

1 are ghost cells where Dirichlet boundary conditions would be applied.
The bold face lines between φ1

2 and φ1
3, and φ2

1 and φ2
2 represent where Neumann

boundary conditions would be applied.

quadratic operators for second order accuracy and tensor product Lagrange inter-

polants more generally. See [19].). We note that if one did not allow for a large

enough overlap between the grids, additional terms would appear in Equations 4.4

and 4.5 where values from one grid would be interpolated to another grid as boundary

conditions, which would then in turn be interpolated back to the original grid as addi-

tional terms in the former grid’s own boundary conditions. This circular dependency

is further discussed in [19] in which they state one could either perform an additional

implicit solve to compute the true interpolation weights as a preprocessing step or

include the additional implicit interpolation equations into the full system. While

it is possible to support a large enough overlap such that this is not necessary [19]

suggests that in the case of coarse grids this implicit interpolation is advantageous by

allowing a minimal overlap.

While most methods use only Dirichlet conditions to couple grids (i.e. H1,2 = 0 and

H2,1 = 0), if instead one chooses to enforce compatibility between the solutions on

different grids using Neumann boundary conditions along intergrid boundaries, the

system can be singular. To illustrate this we consider the example of two grids as

shown in Figure 4.2. The Laplacians (before cutting out the cells containing φ1
3 and

φ2
1) for the cells containing samples φ1

2 and φ2
2 are

∂2φ12
∂x2

= (φ1
3 − 2φ1

2 + φ1
1)/∆x2 and

∂2φ22
∂x2

= (φ2
3 − 2φ2

2 + φ2
1)/∆x2 respectively. Enforcing a Neumann boundary condition

of
∂φ12.5
∂x

= (φ2
3−φ2

2)/∆x on grid 1, gives the modified Laplacian
∂2φ12
∂x2

= (φ2
3−φ2

2−φ1
2 +

φ1
1)/∆x2. Enforcing a Neumann boundary condition of

∂φ21.5
∂x

= (φ1
2 − φ1

1)/∆x on grid
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2, gives the modified Laplacian
∂2φ22
∂x2

= (φ2
3 − φ2

2 − φ1
2 + φ1

1)/∆x2. Thus,
∂2φ12
∂x2

=
∂2φ22
∂x2

and consequently the resulting coupled system is singular. Note that while more

complex multidimensional cases will not always be exactly singular due to approx-

imations when interpolating, the system still asymptotes towards singularity as the

grid is refined and thus will still be poorly conditioned. Although the rank 1 nullspace

admitted by solid wall boundary conditions in standard incompressible flow has long

been addressed by projecting out the nullspace, the complexity of the nullspace re-

sulting from the interpolation makes it difficult to compute. This singularity is also

avoided by using mixed boundary conditions where the boundary condition at one or

more locations is replaced by a Dirichlet coupling condition.

In general Equations 4.4 and 4.5 do not yield a symmetric system due to the fact that

the intergrid boundary conditions applied to the first grid are not coincident with

those applied to the second grid. Similar issues arise in fluid-structure interaction

problems where the fluid-structure boundaries are non-conforming. One common

approach to solving these problems is to couple the solid and fluid velocities together

at fluid faces by using a Lagrange multiplier to conservatively force continuity between

the fluid and structures velocities across the boundary, see e.g. [94, 93]. One could

follow this strategy by modifying Equations 4.4 and 4.5 to include similar forcing

terms in order to enforce matching values of ∇φ at boundaries. However, while this

will produce a symmetric system, the same nullspace issues discussed above for the

case of using Neumann boundary conditions will apply here.

A common approach to solving Equations 4.4 and 4.5 is to use a block Gauss-Seidel

outer iteration such as follows:

D1G1φ
k+1
1 = f1 −D1

(
G1gJ1,2φ

k
2 + H1,2G2φ

k
2 + G1dφ1d +

∂φ1n

∂~n

)
(4.6)

D2G2φ
k+1
2 = f2 −D2

(
G2gJ2,1φ

k+1
1 + H2,1G1φ

k+1
1 + G2dφ2d +

∂φ2n

∂~n

)
(4.7)

where the superscript on φ indicates the Gauss-Seidel iterate. This scheme allows

the diagonal block associated with each grid to be solved independently of the other
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grids with the single grid solver of the implementer’s choice (i.e. Equations 4.6 and 4.7

would be solved in an alternating fashion until a convergence criterion was reached).

However, this scheme, also known as a Schwartz alternating method or Partitioned

method, suffers from significant convergence issues. While for some cases there exists

proofs showing that the method allows the overall scheme to converge to the solu-

tion of the original problem, the method can often diverge. In fact, when enforcing

compatibility between the solution on different grids using Neumann boundary con-

ditions, in addition to the diagonal blocks themselves being singular, the right hand

side can even be incompatible.

Some of the more successful approaches have directly solved Equations 4.4 and 4.5

monolithically for φ1 and φ2. Multigrid methods have been shown as extremely

effective (see e.g. [46, 45]) by exploiting the fact that the component grids are them-

selves logically rectangular. This allows for straightforward and accurate coarsening

strategies by simultaneously coarsening each grid by the same factor and then comput-

ing the corresponding monolithic coupled system for the new coarse discretizations.

Krylov methods (see e.g. [53]) have also been successful using either biCG-stab or

GMRES with an incomplete LU preconditioner.

In an attempt to build a symmetric coupling between the grids, we first consider a

cut cell approach as shown in Figure 4.3. The degrees of freedom remain at the cell

centers of both grids and each degree of freedom corresponds to either a full or par-

tially cut cell. A finite volume approach can be used to compute the volume weighted

discrete divergence for each cell by computing the net flux across all incident faces.

However, computing the gradient is less obvious. In order to produce a symmetric

Laplacian, the gradient operator for each face must include terms only for incident

cells as illustrated in Figure 4.3 (Right). Unfortunately, regardless of exactly how

weights are chosen in these stencils, for most grid configurations, discretization errors

appear which do not vanish in the L∞ norm under grid refinement (see, for example

[4] and [87]). This is due to the fact that the component of the gradient computed at

each face is not orthogonal to the face and does not tend towards orthogonality upon
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Figure 4.3: In this two grid example, we cut overlapped cells on the blue coarse grid
by removing parts of these cells which are covered by finer red grid cells. The blue
dots are the locations of φ samples on the blue grid. The red dots are the locations
of φ samples on the fine red grid. The dashed lines indicate the direction of the
components of the gradient across faces along the intergrid boundaries. Generally
the direction of these components are far from orthogonal to their respective faces.
The components of the gradients incident to the blue φ sample contained within the
red grid (in the blown up portion of the figure to the right) are even inverted.

refinement. This is particularly evident at sharp corners along the intergrid bound-

ary. Authors such as [109] have approached this issue by using deferred correction

methods which attempt to iteratively improve the error by adding the difference in

the gradient components using a gradient computed in the previous iteration. While

this can produce accurate results for cases where the angle between the gradient and

face normal is small enough, convergence issues can persist in more skewed cases.

Furthermore, the additional cost of requiring multiple outer iterations of the entire

system makes the method computationally infeasible. The main idea behind our cou-

pling is that rather than trying to change effective φ sample locations by constructing

complicated gradient stencils, one could instead modify the cell geometry while fix-

ing φ sample locations in order to produce accurate centered difference φ derivatives

along grid boundaries.
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4.3 Voronoi Diagram Discretization

Figure 4.4: The composite grid resulting from our proposed method for coupling
multiple grids by generating a Voronoi mesh along their boundaries. The dots are
the cell centers of boundary cells that are incident to Voronoi faces - note every dot
corresponds to a degree of freedom originally from either the red or blue grid as
indicated by their color.

Inspired by [101] and [12], we take the approach of using a Voronoi diagram to com-

pute the coupling terms between the discretizations on each grid, as illustrated in

Figure 4.4. By definition each face in a Voronoi diagram is both orthogonal to and

bisects the line segment between the centers of the cells incident to the face. We

note that because Cartesian grids are already Voronoi diagrams it is only necessary

to mesh along intergrid boundaries. While this approach deviates from traditional

Chimera grid schemes which do not apply any meshing in order to couple together

overlapping grids, we stress that typically one is already spending considerable effort

constructing and maintaining body-fitted grids with curvilinear coordinates, so it is

reasonable to perform a small amount of additional meshing on a lower-dimensional

manifold in order to produce a well conditioned symmetric positive definite system

which allows for the use of simple and stable solvers such as preconditioned conjugate
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gradient. We do note that this lower-dimensional meshing must occur every time

step if the grids are moving. However, if one is using more complicated curvilinear

grids, one must also compute the inverse mappings for interpolation locations each

time step.

Since we do not exchange information between grids through the use of overlapping

regions, we do not require our grids to overlap by a certain number of cells. Instead,

we cut out enough cells in order to explicitly prevent the remaining parts of each grid

from overlapping as illustrated in Figure 4.5 (a). It is also important to not remove too

many cells and create large gaps between the grids which can also introduce significant

numerical error in the resulting discretization. We proceed by removing any coarse

cells which contain the cell center of a finer cell, as well any coarse cells whose cell

center is contained within a finer cell. It is important to emphasize that when checking

a coarse cell against another finer cell, we first check whether the finer cell itself is

not cut out by an even finer cell. Although this fine to coarse strategy favors finer

grid cells, any other reasonable strategy could be used with proper modifications.

For example, in the case when two solid bodies (each with their own grid) are in

close proximity, it may be desirable to prefer cells based on their distance from their

respective bodies.

We directly compute the Voronoi diagram for all remaining cell centers as shown in

Figure 4.5, noting that for all the interior cells of each grid the Cartesian geometry

already is a Voronoi diagram - and thus we only need to compute the geometry for

boundary cells. For each boundary cell we first find all nearby cell centers within

some prescribed distance τ . Then considering each nearby cell center one at a time

we construct a candidate plane for the polygonal face between these two cell centers,

equidistant between these two cell centers. For every other neighboring cell center

within the distance τ , this candidate plane is clipped to a smaller polygonal area by

the candidate planes formed between the original cell center and each of the other

nearby cell centers. Note that the final plane could be an empty set in which case the

two cells values do not interact and are not directly coupled in the discretization. Note

also that while building a Voronoi mesh can sometimes require sensitive calculations,
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(e) (f) (g)
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Figure 4.5: Our procedure for generating the Voronoi face between cell i and its
first neighbor cell 1. (a) The remaining Cartesian cell geometry after cutting out
overlapping cells on the grids is drawn in blue for the coarse grid and red for the fine
grid. The black dots indicate non-removed cells along the intergrid boundary with
only partial geometry remaining after the cell removing procedure. The black line
indicates the initial unclipped face between cells i and 1 and the dotted line indicates
the orthogonal line between those cells’ centers. (b)-(g) The face between cells i and 1
is sequentially clipped by the plane (the dashed lines) between cell i and its neighbor
cells 2 to 7. The black line shows resulting face between cells 1 and i after each
clipping operation. (h) Shows the final face in context with the complete Voronoi
diagram (shown in green).

this sensitivity only applies to arbitrary point sets and is not a concern for the highly

structured samples in our application.

For the sake of exposition, we assume that our grids have equal edge length cube

cells. Then, given our prescribed algorithm for deleting cell centers, the maximum

distance to a remaining cell center from a point randomly chosen within a certain grid

is |∆~x|. To see this, first note that if the randomly chosen point lies within a cell that

is not deleted, it is trivially true. Otherwise, if that cell was deleted, it either contains
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a cell center from a finer grid and again it is trivially true, or a finer cell contains

the cell center of the original grid and it is again true. In this case, the distance

from the randomly chosen point to the deleted cell’s center is at most |∆~x|/2 and

the distance from the that cell’s center to the finer grid cell center is at most |∆~x|/2,

thus proving the assertion. As a result, for any cell center more than a distance of

|∆~x| within a grid’s domain, each point within the corresponding Voronoi cell must

be no more than |∆~x| from the cell center. Furthermore, each face incident to the

cell must be no further than |∆~x| from the cell center. Since faces are equidistant

to their incident cell centers, the original cell center must be less than a distance of

2|∆~x| away from another cell’s center in order for the two cells to share a face. Thus

in order to compute τ for a given cell, we find the finest grid whose domain, shrunken

by the grid’s corresponding |∆~x|, contains the cell center and set τ = 2|∆~x|. If no

grid is found we use |∆~x| from the coarsest grid and include ghost cells which lie

outside the computational domain when creating and clipping Voronoi faces.

Once we have computed the Voronoi mesh geometry we proceed to discretize Equa-

tions 4.1-4.3 using a finite volume approach as follows. We begin by integrating

Equation 4.1 over the control volume, for a cell i as follows:∫
Ωi

∇ · ∇φ(~x)d~x =

∫
Ωi

f(~x)d~x

where Ωi is the control volume of cell i. We then invoke the divergence theorem to

change the volume integral into a surface integral as follows:∫
∂Ωi

~n(~x) · ∇φ(~x)d~x =

∫
Ωi

f(~x)d~x

where ∂Ωi is the surface of the control volume of cell i, and ~n is the outward point-

ing normal on the surface of cell i. We subsequently discretize these equations by

approximating the integral on the left hand side by summing over the area weighted

normal derivatives at face centers and by approximating the right hand side integral



52 CHAPTER 4. SPD POISSON EQUATION DISCRETIZATION

as the cell volume times f(~x) evaluated at the cell center as follows:

(VcD∇φ)i =
∑
j∈Ni

Ai,j(~ni,j · ∇φi,j) = Vifi (4.8)

where Ni contains the indices of the cells adjacent to cell i, Ai,j is the area of the face

between cells i and j and Vi is the volume of cell i. ~ni,j = (~xj − ~xi)/|~xj − ~xi| is the

normal pointing from cell i to cell j where ~xi and ~xj are the centers of cells i and j

respectively. ∇φi,j is the gradient of φ at the center of the face between cells i and

j, and fi = f(~xi) is the value of the right hand side of Equation 4.1 at the center

of cell i. Note that VcD is represented as a single assembled matrix which contains

the volume weighted divergence discretization for each cell. We then discretize the

normal derivatives of φ using second order accurate centered finite differencing as

follows:

(Gφ)i,j = ~ni,j · ∇φi,j = (φj − φi)/|~xj − ~xi| (4.9)

where φi and φj are the values of φ located at the centers of cells i and j respectively.

Note that G is the assembled matrix containing the gradient discretization for each

face. Since we can view our Voronoi discretization as a global mesh with regular

connectivity we can formulate our final system as a single set of equations over the

entire mesh using our definitions for the gradient and divergence operators in Equa-

tions 4.8 and 4.9. After taking into account the boundary conditions and rearranging

terms, we arrive at the following symmetric positive definite system with orthogonal

gradient components computed at each face:

−VcDGφ = −Vcf + VcD

(
Gdφd +

∂φn

∂~n

)
(4.10)

where φ contains the discrete values of φ at non-removed cells over the entire Chimera

grid. Vc is a matrix with the Voronoi cell volumes as entries along the diagonal. Note

that Equation 4.10 is the volume weighted form of Equation 4.1 in order to maintain

symmetry. In order to solve Equation 4.10 we use incomplete Cholesky preconditioned
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conjugate gradient.

4.4 Numerical Results

1

2

3

4

Figure 4.6: The domains of the grids used in our Poisson equation tests in two spatial
dimensions.

In order to examine the convergence of our spatial discretization we have implemented

several convergence tests in both two and three spatial dimensions. In all tests we

used Dirichlet boundary conditions set along the exterior computational boundary.

In two spatial dimensions we use the domain Ω = [−1, 1]× [−1, 1] for all tests which

is discretized by four overlapping grids as listed in Table 4.1 and shown in Figure 4.6.

Table 4.2 gives the errors and orders of accuracy for φ(x, y) = sin(πx)sin(πy). Table

4.3 gives the errors and orders of accuracy for φ(x, y) = ex(x2sin(y) + y2).
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Object space domain ∆x ~s θ
1 [−1, 1]× [−1, 1] 2/n (0, 0) 0
2 [−.4, .4]× [−.4, .4] .8/n (−.15, .1) π/6
3 [−.3, .3]× [−.2, .2] .4/n (.1,−.3) −π/12
4 [−.15, .15]× [−.15, .15] .15/n (0,−.1) π/24

Table 4.1: Domains, cell sizes, positions (~s) and orientations (θ) of the four grids used
in our Poisson equation tests in two spatial dimensions. n indicates the number of
cells in each dimension on the coarsest grid. Note that all cells on all grids are square,
the 3rd grid is rectangular with more square grid cells in one direction, and the 4th
grid is extra fine where the numerator is correctly listed as .15 in the table. See also
Figure 4.6.

n L1 Error Order L∞ Error Order
32 1.88× 10−3 – 6.25× 10−3 –
64 4.38× 10−4 2.10 1.72× 10−3 1.93
128 1.08× 10−4 2.02 4.33× 10−4 1.99
256 2.68× 10−5 2.01 1.16× 10−4 1.90
512 6.67× 10−6 2.01 2.73× 10−5 2.09

Table 4.2: Convergence results for solving a Poisson equation with analytic solution
φ(x, y) = sin(πx) sin(πy).

n L1 Error Order L∞ Error Order
32 2.82× 10−4 – 1.41× 10−3 –
64 6.75× 10−5 2.06 3.69× 10−4 1.94
128 1.66× 10−5 2.03 9.87× 10−5 1.90
256 4.10× 10−6 2.01 2.55× 10−5 1.95
512 1.02× 10−6 2.01 6.62× 10−6 1.95

Table 4.3: Convergence results for solving a Poisson equation with analytic solution
φ(x, y) = ex(x2sin(x) + y2).
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In three spatial dimensions we use the domain Ω = [−1, 1] × [−1, 1] × [−1, 1] for

all tests which is discretized by four overlapping grids as listed in Table 4.4 and

shown in Figure 4.7. Table 4.5 gives the errors and orders of accuracy for φ(x, y, z) =

sin(πx)sin(πy)sin(πz). Table 4.6 gives the errors and orders of accuracy for φ(x, y) =

e−x
2−y2−z2 . Table 4.7 gives the errors and orders of accuracy for φ(x, y, z) = ex+ey+ez.

1
2

3

4

Figure 4.7: The domains of the grids used in our Poisson equation tests in three
spatial dimensions.
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Object space domain ∆x ~s θ,~a
1 [−1, 1]× [−1, 1]× [−1, 1] 2/n (0, 0, 0) 0, (0, 0, 0)

2 [−.4, .4]× [−.4, .4]× [−.4, .4] 0.8/n (−.15, .1, 0) π/4, (1/
√

6, 2/
√

6, 1/
√

6)

3 [−.45, .45]× [−.3, .3]× [−.3, .3] 0.6/n (.1,−.3, 0) π/10, (−1/
√

11, 3/
√

11,−1/
√

11)

4 [−.15, .15]× [−.15, .15]× [−.15, .15] 0.3/n (0,−.1, 0) π/2, (4/
√

21,−1/
√

21, 2/
√

21)

Table 4.4: Domains, cell sizes, positions and orientations (angle θ, axis ~a) of the four
grids used in our Poisson tests in three spatial dimensions. n indicates the number
of cells in each dimension on the coarsest grid.

n L1 Error Order L∞ Error Order
16 4.36× 10−3 – 2.14× 10−2 –
32 1.00× 10−3 2.12 6.21× 10−3 1.78
64 2.39× 10−4 2.07 1.70× 10−3 1.87
128 5.82× 10−5 2.04 5.05× 10−4 1.75
256 1.44× 10−5 2.02 1.44× 10−4 1.81

Table 4.5: Convergence results for solving a Poisson equation with analytic solution
φ(x, y, z) = sin(πx)sin(πy)sin(πz).

n L1 Error Order L∞ Error Order
16 2.10× 10−3 – 7.45× 10−3 –
32 4.94× 10−4 2.09 1.68× 10−3 2.15
64 1.20× 10−4 2.04 4.26× 10−4 1.98
128 2.95× 10−5 2.02 1.09× 10−4 1.97
256 7.33× 10−6 2.01 2.86× 10−5 1.93

Table 4.6: Convergence results for solving a Poisson equation with analytic solution
φ(x, y, z) = e−x

2−y2−z2 .

n L1 Error Order L∞ Error Order
16 5.70× 10−4 – 2.46× 10−3 –
32 1.27× 10−4 2.16 6.37× 10−4 1.95
64 3.00× 10−5 2.09 1.70× 10−4 1.91
128 7.28× 10−6 2.04 4.38× 10−5 1.95
256 1.79× 10−6 2.02 1.13× 10−5 1.96

Table 4.7: Convergence results for solving a Poisson equation with analytic solution
φ(x, y, z) = ex + ey + ez.
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4.5 Matrix Conditioning

In order to examine the conditioning of the matrix produced by this spatial dis-

cretization, we have compared the number of conjugate gradient (CG) and incomplete

Cholesky preconditioned conjugate gradient (ICPCG) iterations required to satisfy

|V−1
c r|∞ < 10−8 where r is the current residual of Equation 4.10. Note that we mul-

tiply the residual by V−1
c since in this test we are interested in the residual of the

unweighted discretized Poisson equation. We note that each iteration of ICPCG takes

roughly 2.5 times longer than an iteration of CG due to the backwards and forwards

substitutions performed when applying the preconditioner. The iteration counts for

both two- and three-dimensional examples are shown in Table 4.8. Notice that the

preconditioner works, significantly reducing the iteration counts, and that even with

the added cost of applying the preconditioner there is a large computational saving.

φ(x, y) = sin(πx) sin(πy) φ(x, y, z) = sin(πx)sin(πy)sin(πz)
n CG ICPCG CG ICPCG
16 511 37 235 33
32 1955 61 702 53
64 6323 110 1833 99
128 22715 328 6702 225
256 96511 795 24677 492
512 385218 4028 - -

Table 4.8: The number of iterations taken by CG and ICPCG in order to converge
for successively finer resolutions in both two and three dimensions.



Chapter 5

Diffusion Discretization

5.1 Scalar Diffusion Equation

We next modify our Poisson solver to solve the following diffusion equation:

∂φ

∂t
= ∇ · β(~x)∇φ(~x), ~x ∈ Ω (5.1)

φ(~x) = g(~x, t), ~x ∈ ∂ΩD (5.2)

~n(~x) · ∇φ(~x) = h(~x, t), ~x ∈ ∂ΩN (5.3)

where β is the diffusion coefficient. We first solve Equations 5.1-5.3 for values of φ

located at cell centers by modifying Equation 4.10 from Section 4.3 to implement a

backward Euler time integration scheme by solving the following symmetric positive

definite system:

(Vc −∆tβVcDG)φn+1 = Vcφ
n + ∆tβVcD

(
Gdφ

n+1
d +

∂φn+1
n

∂~n

)
(5.4)

where φn and φn+1 are the discrete φ values at non-removed cells at times tn and tn+1

respectively. We assume β to be spatially constant for the sake of exposition. Note

that Equation 5.4 is the volume weighted form of Equation 5.1 in order to maintain
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1

2

t = 0

t = .5

t = 1

Figure 5.1: The domains of the grids used in our diffusion equation tests in 2 spacial
dimensions with the second grid shown at its time t = 0, t = .5 and t = 1 positions
and orientations.

symmetry. For second order accuracy we use a trapezoid rule time integration scheme

by solving the following equation:(
Vc −

∆t

2
βVcDG

)
φn+1 =

(
Vc +

∆t

2
βVcDG

)
φn

+ ∆tβVcD

(
Gd

φn+1
d + φn

d

2
+

∂φn+1
n

∂~n
+ ∂φn

n

∂~n

2

)
(5.5)

In two spatial dimensions we use the domain Ω = [−1, 1]× [−1, 1] which is discretized

by two overlapping grids as listed in Table 5.1 and shown in Figure 5.1. In all of

our diffusion equation tests we set β = .01 and specify Dirichlet boundary conditions

along the exterior computational boundary. In each test we integrate the solution

from time t = 0 to t = 1 using the time step ∆t ≈ 1/n and compute the errors

at time t = 1. Note that for now we only consider case where the second grid is

stationary and remains at its initial time t = 0 location. We first consider the exact

solution as given by φ(x, y, t) = e−.02π2tsin(πx)sin(πy). Tables 5.2 and 5.3 show the

results for backward euler and trapezoid rule time integration on a stationary grid.
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Object space domain ∆x ~s θ
1 [−1, 1]× [−1, 1] 2/n (0, 0) 0
2 [−.4, .4]× [−.4, .4] .8/n (−.15, .1) + t(.2,−.1) (1 + t)π/6

Table 5.1: Domains, cell sizes, positions (~s) and orientations (θ) of the four grids used
in our diffusion equation tests in two spatial dimensions. n indicates the number of
cells in each dimension on the coarsest grid.

n L1 Error Order L∞ Error Order
32 4.34× 10−4 – 2.41× 10−3 –
64 1.56× 10−4 1.48 6.74× 10−4 1.84
128 6.35× 10−5 1.29 1.59× 10−4 2.09
256 2.79× 10−5 1.18 6.99× 10−5 1.18
512 1.32× 10−5 1.08 3.30× 10−5 1.08
1024 6.46× 10−6 1.03 1.61× 10−5 1.04

Table 5.2: Convergence results for solving a diffusion equation with analytic solution
φ(x, y, t) = e−.02π2tsin(πx)sin(πy) on two stationary grids using backward Euler time
integration.

n L1 Error Order L∞ Error Order
32 2.86× 10−4 – 2.39× 10−3 –
64 7.05× 10−5 2.02 7.35× 10−4 1.70
128 1.72× 10−5 2.04 1.82× 10−4 2.02
256 4.26× 10−6 2.01 4.57× 10−5 1.99
512 1.06× 10−6 2.01 1.17× 10−5 1.97
1024 2.65× 10−7 2.00 2.90× 10−6 2.01

Table 5.3: Convergence results for solving a diffusion equation with analytic solution
φ(x, y, t) = e−.02π2tsin(πx)sin(πy) on two stationary grids using trapezoid rule time
integration.
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Figure 5.2: When interpolating between cell centered values on the Voronoi mesh
(drawn as blue and red faces which correspond to the Cartesian faces taken from the
coarse and fine grids respectively, and green faces which correspond to unstructured
Voronoi faces), we use a hybrid interpolation scheme. The interpolation mesh is
drawn in black overtop the Voronoi mesh. If an interpolation location lies within
a square on the interpolation mesh, bilinear interpolation is applied. Otherwise,
if an interpolation location lies within a triangle of the Delaunay mesh dual of the
unstructured part of the Voronoi diagram, barycentric interpolation over that triangle
is applied. Note that in the former case, if we were using the full Delaunay mesh dual
of the Voronoi diagram these squares would be tesselated with triangles and only
barycentric interpolation would be used. However, this would reduce accuracy.

5.1.1 Moving Grids

In order to treat moving grids we remap φ values at the beginning each of step

using the semi-Lagrangian advection schemes from Section 3.2 applied with a zero

velocity field to calculate time tn values of φ on the grids in their time tn+1 locations.

In order to apply the semi-Lagrangian schemes we first need to define φ at every

location on every grid in order to compute updated values for removed cells not

included in the implicit solve. This requires interpolating from the Voronoi degrees

of freedom back to the Cartesian grid degrees of freedom that were removed when
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constructing the Voronoi mesh. We accomplish this by interpolating over a modified

version of the Delaunay mesh dual of the Voronoi mesh as illustrated in Figure 5.2. If a

removed degree of freedom lies within the support of non-removed degrees of freedom

from one of the Cartesian grids, we simply use multilinear interpolation. Otherwise,

the interpolation is slightly more intricate and needs to be accomplished using the

aggregate Voronoi mesh, in which case we interpolate values of φ by using barycentric

coordinates to interpolate across the tetrahedra belonging to the Delaunay mesh dual

of the Voronoi diagram. We note that since we do not have the exact connectivity of

our Voronoi mesh, we allow overlapping tetrahedra in (near) degenerate cases in order

to guarantee that valid interpolation stencils exist for all interpolation locations.

When using the first order accurate semi-Lagrangian Advection scheme to remap

values we found that the overall scheme degenerates to first order even when using

the second order accurate version of the method in Equation 5.5. We found that

this can be alleviated by using the second order accurate SL-MacCormack advection

scheme from Section 3.2 to remap time tn values of φ.

We now consider the case where the second grid is allowed to move. Using the

same analytic function as in the stationary case, Tables 5.4 and 5.5 show the results

for backward euler and trapezoid rule time integration using semi-Lagrangian and

SL-MacCormack remapping respectively. Finally, table 5.6 shows that using semi-

Lagrangian remapping degenerates the trapezoid rule time integration scheme towards

first order as compared to when using SL-MacCormack remapping.

n L1 Error Order L∞ Error Order
32 1.82× 10−3 – 1.89× 10−2 –
64 7.13× 10−4 1.35 8.12× 10−3 1.22
128 3.06× 10−4 1.22 3.71× 10−3 1.13
256 1.42× 10−4 1.11 1.83× 10−3 1.02
512 6.82× 10−5 1.06 9.02× 10−4 1.02
1024 3.33× 10−5 1.03 4.47× 10−4 1.01

Table 5.4: Convergence results for solving a diffusion equation with analytic solution
φ(x, y, t) = e−.02π2tsin(πx)sin(πy) on one stationary grid and one moving grid using
semi-Lagrangian remapping and backward Euler time integration.
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n L1 Error Order L∞ Error Order
32 5.68× 10−4 – 1.04× 10−2 –
64 1.34× 10−4 2.08 2.33× 10−3 2.16
128 3.29× 10−5 2.03 5.75× 10−4 2.02
256 8.40× 10−6 1.97 1.41× 10−4 2.02
512 2.09× 10−6 2.01 3.44× 10−5 2.04
1024 5.26× 10−7 1.99 8.77× 10−6 1.97

Table 5.5: Convergence results for solving a diffusion equation with analytic solution
φ(x, y, t) = e−.02π2tsin(πx)sin(πy) on one stationary grid and one moving grid using
SL-MacCormack remapping and trapezoid rule time integration.

n L1 Error Order L∞ Error Order
32 1.77× 10−3 – 1.90× 10−2 –
64 6.86× 10−4 1.37 8.22× 10−3 1.21
128 2.93× 10−4 1.23 3.76× 10−3 1.13
256 1.36× 10−4 1.11 1.85× 10−3 1.02
512 6.51× 10−5 1.06 9.14× 10−4 1.02
1024 3.18× 10−5 1.03 4.53× 10−4 1.01

Table 5.6: Convergence results for solving a diffusion equation with analytic solution
φ(x, y, t) = e−.02π2tsin(πx)sin(πy) on a moving grid using semi-Lagrangian remapping
and trapezoid rule time integration.

In three spatial dimensions we use the domain Ω = [−1, 1] × [−1, 1] × [−1, 1] which

is discretized by two overlapping grids as listed in Table 5.7 and shown in Figure 5.3.

We consider solving for φ values at cell centers for the analytic function φ(x, y, z, t) =

e−.03π2tsin(πx)sin(πy)sin(πz). Table 5.8 gives the errors and orders of accuracy when

using trapezoid rule time integration and SL-MacCormack remapping.

Object space domain ∆x ~s θ,~a
1 [−1, 1]× [−1, 1]× [−1, 1] 2/n (0, 0, 0) 0, (0, 0, 0)

2 [−.4, .4]× [−.4, .4]× [−.4, .4] 0.8/n (−.15, .1, 0) + t(.2,−.1, .05) (1 + t)π/4, (1/
√

6, 2/
√

6, 1/
√

6)

Table 5.7: Domains, cell sizes, positions (~s) and orientations (angle θ, axis ~a) of the
two grids used in our diffusion equation tests in three spatial dimensions. n indicates
the number of cells in each dimension on the coarsest grid.
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1

2

t = 0

t = .5
t = 1

Figure 5.3: The domains of the grids used in our diffusion tests in three spatial
dimensions with the second grid shown at its time t = 0, t = .5 and t = 1 positions
and orientations.

n L1 Error Order L∞ Error Order
32 3.09× 10−4 – 9.95× 10−3 –
64 7.54× 10−5 2.04 2.64× 10−3 1.91
128 1.86× 10−5 2.02 6.64× 10−4 1.99
256 4.61× 10−6 2.01 1.77× 10−4 1.90

Table 5.8: Convergence results for solving a diffusion equation with analytic solution
φ(x, y, z, t) = e−.03π2tsin(πx)sin(πy)sin(πz) on one stationary grid and one moving
grid using SL-MacCormack remapping and trapezoid rule time integration.



5.2. NAVIER-STOKES VISCOSITY 65

5.2 Navier-Stokes Viscosity

For spatially constant viscosity, the viscous terms in the Navier-Stokes equations can

be treated in an implicit mannger by independently solving a scalar diffusion-like

operator for each of the components of the velocity. When using standard MAC

grids, this becomes problematic when one grid is rotated with respect to another

since the cleanly separated MAC grid degrees of freedom on one grid are mixed

when considered using the coordinate system on the other grid. Thus we compute

a world space velocity vector at each cell center by averaging the samples stored at

incident faces and then rotating the resulting vector into world space. We then apply

the cell based diffusion equation separately and independently in each component

direction, i.e. for each component of the cell centered vector field. Notably, this does

not require constructing an additional mesh, as we can reuse the one that will be

used for the pressure Poisson solve. After applying the viscous update to the cell

center velocity components, we could interpolate these back to the grid degrees of

freedom but this increases numerical dissipation. Instead, one could interpolate the

time tn+1 values back to the original Cartesian grid cell center degrees of freedom,

compute differences with the time tn values, and then map these differences back to

the face degrees of freedom–however, this also seemed to lower the order of accuracy.

Therefore, we compute differences between the time tn and time tn+1 values directly

on the Voronoi cell center degrees of freedom and then interpolate these differences

back to the removed cells and a one layer thick band of ghost cells on each grid before

distributing these differences back to the faces. In order to prevent numerical drift

in overlapped regions, faces incident only to removed cells are updated by averaging

the interpolated time tn+1 values at incident cell centers. We note that applying slip

boundary conditions to a rotated grid would cause the velocity components to no

longer be cleanly separated, however, we do not consider this case.

We once again consider the moving grids in Table 5.1, Figure 5.1, Table 5.7 and

Figure 5.3. In two spatial dimensions we consider the analytic vector valued func-

tion ~φ(x, y, t) = (e−.02π2tsin(πx), sin(πy), e−.13π2tsin(2πx)sin(3πy)). Table 5.9 gives



66 CHAPTER 5. DIFFUSION DISCRETIZATION

the errors and orders of accuracy when using trapezoid time integration and SL-

MacCormack remapping. In three spatial dimensions we consider the analytic vector

valued function

~φ(x, y, z, t) =


e−.03π2tsin(πx)sin(πy)sin(πz)

e−.12π2tsin(2πx)sin(2πy)sin(2πz)

e−.14π2tsin(πx)sin(2πy)sin(3πz)

 (5.6)

Table 5.10 gives the errors and orders of accuracy when using trapezoid time integra-

tion and SL-MacCormack remapping.

n L1 Error Order L∞ Error Order
32 7.47× 10−3 – 4.41× 10−2 –
64 1.82× 10−3 2.04 1.01× 10−2 2.13
128 4.50× 10−4 2.02 2.51× 10−3 2.01
256 1.12× 10−4 2.01 6.26× 10−4 2.00
512 2.78× 10−5 2.00 1.56× 10−4 2.00
1024 6.94× 10−6 2.00 3.90× 10−5 2.00

Table 5.9: Convergence results for solving a separate diffu-
sion equation in each direction with analytic solution ~φ(x, y, t) =
(e−.02π2tsin(πx)sin(πy), e−.13π2tsin(2πx)sin(3πy)) on one stationary and one
moving grid using SL-MacCormack remapping and trapezoid rule time integration.

n L1 Error Order L∞ Error Order
32 4.99× 10−3 – 3.98× 10−2 –
64 1.23× 10−3 2.03 1.01× 10−2 1.98
128 3.04× 10−4 2.01 2.49× 10−3 2.02
256 7.55× 10−5 2.01 5.97× 10−4 2.06

Table 5.10: Convergence results for solving a separate diffu-
sion equation in each direction with analytic solution ~φ(x, y, t) =
(e−.03π2tsin(πx)sin(πy)sin(πz), e−.12π2tsin(2πx)sin(2πy)sin(2πz), e−.14π2tsin(πx)sin(2πy)sin(3πz))
on one stationary grid and one moving grid using SL-MacCormack remapping and
trapezoid rule time integration.
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5.3 Monolithically Coupled Formulation

There are several cases where the component-wise solution approach from Section 5.2

poses issues. For example, when applying slip boundary conditions the components

of the velocity are coupled together along the boundaries or in the case of spatially

varying viscosity where the diffusion equations are coupled across spatial dimensions.

One approach to simplify this was considered in [92] where the coupling terms were

treated explicitly in order to separate the solve into three separate diffusion equations.

Although we do not consider spatially varying viscosity in this paper or non-axis

aligned slip boundary conditions, we briefly consider a fully coupled solve along the

lines of [96] which does not require interpolating back and forth (or in our case

interpolating in one direction and mapping the differences back in the other direction).

Since the following exercise is only done for the purpose of illustration we consider

solving on a fixed Voronoi mesh only and do not map back and forth from the Carte-

sian grids. In addition we only consider Dirichlet boundary conditions. With these

simplifications our approach to a coupled solver is as follows. We start with compo-

nent values of ~φ on each Voronoi face and stack all the internal faces into a single

vector φf , and all the boundary faces with Dirichlet boundary conditions into φf,d.

For each component of the velocity in world space we use unweighted least squares to

interpolate from incident Voronoi faces to cell centers, i.e. φx = Wxφf + Wx,dφf,d

and φy = Wyφf + Wy,dφf,d. In order to compute the gradient at faces along the

domain boundary, it is necessary to have ~φ values at ghost cells across faces with

Dirichlet boundary conditions, which we denote as φx,d and φy,d. Using φx, φy, φx,d,

and φy,d we can discretize the viscous forces at cell centers and then conservatively

distribute these forces back to the Voronoi faces by multiplying by WT
x and WT

y .

Using backward Euler time integration to integrate these forces we arrive at the fol-

lowing symmetric positive definite system for fully coupled face unknowns where we
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have stacked Wx and Wy into W:(
Vf −∆tβWT

(
VcDG 0

0 VcDG

)
W

)
φn+1
f = Vfφ

n
f

+ ∆tβWT

(
VcDG 0

0 VcDG

)
Wdφ

n+1
f,d

+ ∆tβWT

(
VcDGdφ

n+1
x,d

VcDGdφ
n+1
y,d

)
(5.7)

where Vf is a diagonal matrix of face dual cell volumes.

Table 5.11 gives the errors and orders of accuracy when applying this scheme with

the analytic function ~φ(x, y, t) = (e−.02π2tsin(πx)sin(πy), e−.13π2tsin(2πx)sin(3πy)).

In tests we found that solving Equation 5.7, over the previous method of solving

for the updated values independently in each direction, did not reduce numerical

dissipation. We did not experiment with trapezoid rule and other ways of raising

the order of accuracy, or explore ways for handling moving grids by mapping back

and forth with the original MAC grid degrees of freedom because we were not able

to devise a workable preconditioner for this approach. We found that our incomplete

Cholesky preconditioner actually led to more instead of less iterations.

n L1 Error Order L∞ Error Order
32 1.42× 10−2 – 2.08× 10−1 –
64 6.52× 10−3 1.12 1.06× 10−1 0.96
128 3.33× 10−3 0.97 8.33× 10−2 0.35
256 1.88× 10−3 0.83 5.51× 10−2 0.60

Table 5.11: Convergence results for solving a diffusion equation in each di-
rection coupled in a monolithic system with analytic solution ~φ(x, y, t) =
(e−.02π2tsin(πx)sin(πy), e−.12π2tsin(2πx)sin(3πy)) on two stationary grids using back-
ward Euler time integration.



Chapter 6

Incompressible Flow

As stated in the original goals of this paper we wish to simulate incompressible flow

problems due to their wide applicabity in many problems. This section discusses

our approach in which we combine the advection schemes from Section 3.2 with the

Poisson equation solver from Section 4 and diffusion equation solver from Section 5.2.

Thus, we first consider the incompressible Navier-Stokes equations as follows:

ρ

(
∂~u

∂t
+ (~u · ∇) ~u

)
= −∇p+ µ∇2~u (6.1)

∇ · ~u = 0 (6.2)

where ρ is the density, ~u is the velocity, p is the pressure and µ is the viscosity.

Equation 6.1 is the momentum equation where the first term is the time derivative,

the second terms describes advection, the third term describes the effect of pressure

gradients on the fluid momentum and the last term includes the viscous stresses.

Equation 6.2 requires that the velocity field by divergence free throughout the fluid

domain, thus enforcing that the fluid is incompressible.

69



70 CHAPTER 6. INCOMPRESSIBLE FLOW

6.1 Fluid Integration Scheme

In order to solve Equations 6.1 and 6.2 we use a splitting method (see [20]). The first

step addresses the advective component as follows:

~̂u = ~un −∆t(~u · ∇)~u (6.3)

We solve Equation 6.3 using the second order accurate SL-MacCormack advection

scheme from Section 3.2 to obtain an intermediate velocity field ~̂u. We address bound-

ary conditions at the computational boundary by using constant extrapolation to fill

ghost cells. After applying these boundary conditions, we proceed to advect values

to every face, obtaining a valid velocity field everywhere. We then continue to add

viscous forces by solving the following equation:

~u∗ = ~̂u+
∆t

ρ
µ∇2~u∗ (6.4)

We solve Equation 6.4 using a second order accurate time discretization (Equation

5.5) independently in each world space component direction as described in Section

5.2. In this step we handle inflow boundary conditions by specifying Dirichlet bound-

ary conditions in all components of the velocity. Outflow boundary conditions are

handled by specifying zero Neumann boundary conditions in all components of the

velocity to prevent momentum from being exchanged across the boundary due to

viscous stress (although momentum still leaves the domain in the advection step).

Slip boundary conditions are handled by specifying Dirichlet boundary conditions

in the normal component and zero Neuman boundary conditions in the tangential

components (noting that in this case we assume the domain boundaries lie along axis

aligned planes in order to simplify applying slip boundary conditions in the viscous

solve as discussed in Section 5.3). After adding viscous forces we proceed to solve for

pressure as follows:

∇2p =
ρ

∆t
∇ · ~u∗ (6.5)
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Since we solve Equation 6.5 on the Voronoi mesh it is first necessary to compute

values of ~u∗ for each face on the Voronoi mesh before we can compute the divergence

of of the post viscosity velocities. Thus, we interpolate a velocity from the Cartesian

grids for each face of the Voronoi mesh retaining only the component normal to

that face. Note that most Voronoi faces coincide with Cartesian grid faces and thus

interpolation is not required for these faces. Then denoting the vector of all these

Voronoi face velocities as u∗ we solve the following analog of Equation 4.10:

−VcDGp̂ = −VcDu∗ + VcD
(
Gdp̂d − un+1

n

)
(6.6)

where p̂ are the pressures scaled by ∆t/ρ, p̂d represents Dirichlet boundary conditions

and un+1
n represents the Neumann boundary conditions implied by faces with fixed

velocities. We handle inflow and slip boundary conditions by setting values of un+1
n

at faces along the boundary. Outflow boundary conditions are handled by specifying

zero Dirichlet boundary conditions. After solving for pressure we update the velocities

as follows:

~un+1 = ~u∗ − ∆t

ρ
∇p (6.7)

Equation 6.7 is used to update the velocities at all faces on the Voronoi mesh us-

ing pressure gradients computed by differencing the pressure samples at incident

non-removed cells as in Equation 4.9. In order to update Cartesian grid faces not

coincident to faces on the Voronoi mesh we use an approach similar to that applied

at the end of the viscous step in Section 5.2. First we compute a velocity vector

at each non-removed cell center by using regularized linear least squares fit of the

velocity components at incident faces on the Voronoi mesh. We then interpolate a

full velocity vector at removed and ghost cell centers before computing the updated

velocity components at removed Cartesian grid faces by averaging the velocities at

incident Cartesian grid cell centers.

We treat bodies immersed in the flow as follows. When advecting velocities we set

velocity Dirichlet boundary conditions at faces whose centers lie inside objects. We
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then advect every face obtaining a valid velocity field everywhere after advection. In

certain examples we also solve an advection equation for a passive scalar φ at cell

centers for visualization purposes. In this case we handle objects by first creating a

levelset for each object and then extrapolating φ in the normal direction using an

O(nlogn) fast marching type method as described in [1, 32]. In both the viscous and

pressure steps we use a simple immersed boundary type approach. In the viscous

step, since the velocity is known inside objects, we simply specify Dirichlet boundary

conditions at the non-removed cell centers inside objects using the pointwise object

velocity. In the pressure solve we similarly set values of un+1
n at faces on the Voronoi

mesh whose centers lie inside an object. Although we have not investigated it our-

selves, we believe that it should be possible to extend the method to higher order

accuracy using e.g. a cut cell approach to more accurately approximate the struc-

ture’s contribution to the volume weighted divergence of each boundary cell in the

pressure solver, as well as using a more accurate time splitting scheme.

6.2 Numerical Results

We use the ghost cell parameters αgrid = 2 and αfluid = 1 as described in Section

3.3. Due to the way the grids are chosen and the fact that they are all Cartesian

we have considerable flexibility when deciding how to decompose the domain when

allocating MPI processes as discussed in Section 2.3. In most of the simpler examples

we allocate a separate MPI process per logical grid. For larger examples we split

each logical grid into several subgrids each having their own MPI process in order

to balance computational and memory loads among the computational nodes as de-

scribed in Section 2.3. In the following subsections we list explicitly how the grids

are subdivided and MPI processes are allocated in the captions of the corresponding

grid configuration tables.
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6.2.1 Two-dimensional Couette flow

We first consider a two-dimensional Couette flow where fluid flows horizontally be-

tween two walls. The bottom wall is stationary while the top moves from left to right

with a horizontal velocity u0 = 1. In this test we use the domain [−1, 1]× [−1, 1] and

let ρ = 1, µ = .01 and target pressure gradient ∂p
∂x

= −.15. With these conditions, the

analytic solution is given as ~u(x, y, t) = (u0y + 1
2µ

∂p
∂x

(y2 − y), 0). In this test we use

analytic velocity boundary conditions on the top, left and bottom sides of the domain,

and zero pressure outflow boundary conditions on the right side of the domain. We

discretize the domain with a large stationary grid and insert a second finer moving

grid as listed in Table 6.1. The second grid is not intended to add any additional

detail or accuracy to the flow, but rather in this case we are demonstrating that it

does not adversely affect the flow field. The u direction velocities on the x medial

plane and pressures on the y medial plane are shown in Figure 6.1. Note that for

both velocity and pressure the results convergence towards the analytic solution as

the grid is refined and that the convergence rate corresponds to first order accuracy.

Note that the sharp changes in the pressure visible in Figure 6.1 (Top) are at grid

boundaries and vary over time due to error incurred in the velocity field as a result of

the remapping as the second grid moves. However, first order accurate convergence

was found at each time. In addition, the results for the same test using only the

background grid are shown producing nearly the analytic solution.

Object space domain ∆x ~s θ
1 [0, 1]× [0, 1] 1/n (0, 0) 0
2 [−.15, .15]× [−.15, .15] 0.3/n (.5, .5) + cos(.5πt)(−.15, .05) tπ/6

Table 6.1: Domains, cell sizes, positions (~s) and orientations (angle θ) of the two
grids used in our Couette flow and lid driven cavity tests. n indicates the number
of cells in each dimension on the coarsest grid. In the case of the lid driven cavity
test, for Reynolds numbers 100 and 400, n = 128 was used and for Reynolds numbers
1000 and 5000, n = 256 was used. Additionally for the case of the lid driven cavity
test, during parallel simulation each grid remained unsubdivided and was allocated a
single MPI process since the number of cells on each grid was the identical.
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Figure 6.1: The results for our Couette flow example using two grids of varying
resolutions and when using only the single coarser grid at the finest resolution. The
analytic solution is also drawn. (Top) shows the pressure along the horizontal plane
through the geometry center of the domain. (Bottom) shows the u velocities on
the vertical plane through the geometric center of the domain. Note that the single
grid simulation produces values nearly identical to that of the analytic solution while
the two grid simulation includes a truncation error that vanishes under refinement
demonstrating first order accuracy. Note that although this example is intended to
examine the behavior of a steady state solution, since the second grid is moving
a time varying error is introduced and the above plots are given for the solution
at t = 41.6667 at which point the solution is well into its steady state regime. The
pressure and velocity profiles at different times within this regime demonstrate similar
convergence behavior.
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6.2.2 Two-dimensional lid driven cavity

We consider a two-dimensional lid driven cavity and compare our results to those of

[36]. In this test we use the domain [−1, 1]× [−1, 1] with zero normal and tangential

velocity boundary conditions on each side except for the top of the domain along

which we specify a tangential velocity of 1. We discretize the domain with a large

stationary grid and insert a second finer moving grid as listed in Table 6.1 with the

MPI subdivision parameters in the table’s caption. The second grid is not intended

to add any additional detail or accuracy to the flow, but rather in this case we are

demonstrating that it does not adversely affect the flow field. The grid configurations

and streamlines are shown in Figure 6.2 for Reynolds numbers 100, 400, 1000 and

5000. Our method produces the same vortices as observed by [36]. The u direction

velocities on the x medial plane and v direction velocities on the y medial plane are

shown in Figures 6.3 and 6.4 respectively. Our results are very close to those from

[36], particularly for smaller Reynolds numbers. We also compared our results to

values computed using only a single grid and found that they were nearly identical.

6.2.3 Two-dimensional moving vortex

In order to demonstrate the ability of our method to smoothly transition flow features

across grid boundaries, we consider a vortex in a flow channel being transported from

one grid to another stationary larger grid. We discretize the domain [0, 1] × [0, 1]

with two grids as listed in Table 6.2, noting that we consider both the case where

the second grid remains stationary at its t = 0 orientation and the case where the

second grid rotates. We specify inflow boundary conditions at the left side of the

domain, slip boundary conditions at the top and bottom walls and outflow boundary

conditions at the right side of the domain. We give the initial time t = 0 velocity
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Figure 6.2: Streamlines for the lid driven cavity example. Notice the tiny vortices at
the bottom right corners of the Reynolds number 1000 and 5000 simulations and at
the bottom left corner of the Reynolds number 5000 simulation. These vortices are
the same as reported by [36].
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Figure 6.3: The u velocities on the vertical plane through the geometric center of
cavity. The red lines correspond to our results and the blue ’+’ symbols correspond
to the results from [36]. Note the good agreement between the results, particularly
for smaller Reynolds numbers.

field as follows:

~u0(~x) = (1, 0)T +
(xc − y, x− yc)T

|~x− ~xc|

e
(

−.25

|~x−~xc|/r−|~x−~xc|2/r2

)
if ‖~x− ~xc‖ < r

0 if ‖~x− ~xc‖ ≥ r
(6.8)

where ~x = (x, y)T , ~xc = (xc, yc)
T is the center of the vortex, and r = .25 is the

diameter of the vortex. We plot the vorticity as the vortex is moving from one grid

to the other in Figure 6.5 at time t = .20833. Note that no artifacts are observed at

the grid boundaries when the fine grid is stationary or rotating. Figures 6.6 and 6.7
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Figure 6.4: The v velocities on the horizontal line through the geometric center of
cavity. The red lines correspond to our results and the blue ’+’ symbols correspond
to the results from [36]. Note the good agreement between the results, particularly
for smaller Reynolds numbers.

give the errors, computed using an n = 1024 simulation as a baseline, and orders of

accuracy for the stationary and rotating grid cases respectively. We note that both

the L1 and L∞ errors tend to zero implying self convergence and that the orders of

accuracy tend towards first order as the grids are refined.
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Object space domain ∆x ~s θ
1 [0, 1]× [0, 1] 1/n (0, 0) 0
2 [−.2, .2]× [−.2, .2] 0.4/n (.5, .5) −tπ/3

Table 6.2: Domains, cell sizes, positions (~s) and orientations (angle θ) of the two grids
used in our vortex flow past grid boundary tests. n indicates the number of cells in
each dimension on the coarsest grid. During parallel simulation each grid remained
unsubdivided and was allocated a single MPI process since the number of cells on
each grid was the identical.

6.2.4 Two-dimensional flow past a stationary circular cylin-

der

We consider the two dimensional stationary circular cylinder example from [54] in

which a two dimensional cylinder is placed within a flow field with approximate far

field boundary conditions in order to examine the resulting vortex shedding patterns.

We discretize the domain [0, 38.4] × [0, 25.6] using three grids as listed in Table 6.3

and as illustrated in Figure 6.8, noting that we consider both the cases where the grid

containing the cylinder remains stationary at its time t = 0 orientation and when it

is allowed to rotate while the cylinder remains stationary. Note that our Chimera

grid approach allows us to discretize this large domain efficiently by using a coarse

grid covering the entire domain in order to approximate far field boundary conditions

such that vortices travel a long way before interacting with the domain walls. The

boundary conditions are specified as follows: the left of the domain has inflow bound-

ary conditions with a velocity of 1, the right of the domain has outflow boundary

conditions, and the top and bottom walls are specified with slip boundary conditions.

The cylinder has diameter 1 and its center is located at ~sobject = (9.6, 12.8). We use a

characteristic length of 1 and a free stream velocity of 1 when computing the viscosity

from the Reynolds number. We calculate the coefficient of drag CD as two times the

net force on the cylinder in the x direction and the coefficient of lift CL as two times

the net force on the cylinder in the y direction.

In Table 6.4 we give the average values and ranges of CD, the ranges of CL, and

Strouhal numbers produced by simulations with Reynolds numbers 100, 150 and 200
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Figure 6.5: Vorticity isocontours for the vortex flow across grid boundary example at
t = .20833. Note that the isocontours match at the grid boundaries and no artifacts
are visible along or further away from the boundaries.



6.2. NUMERICAL RESULTS 81

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

E
rr

or
 c

om
pa

re
d 

to
 #

po
in

ts
 =

 1
02

4

Time (s)

# points = 16
# points = 32
# points = 64

# points = 128
# points = 256
# points = 512

(a) Error in L1 norm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

O
rd

er
 o

f c
on

ve
rg

en
ce

Time (s)

# points = 32
# points = 64

# points = 128
# points = 256
# points = 512

(b) Order in L1 norm

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

E
rr

or
 c

om
pa

re
d 

to
 #

po
in

ts
 =

 1
02

4

Time (s)

# points = 16
# points = 32
# points = 64

# points = 128
# points = 256
# points = 512

(c) Error in L∞ norm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

O
rd

er
 o

f c
on

ve
rg

en
ce

Time (s)

# points = 32
# points = 64

# points = 128
# points = 256
# points = 512

(d) Order in L∞ norm

Figure 6.6: The errors and orders of accuracy of velocities for the vortex flow across
grid boundary example, with a stationary fine grid. Figures (a) and (c) show that
the error tends towards zero in both the L1 and L∞ norms implying self convergence,
whereas Figures (b) and (d) show that the error seems to be improving towards first
order accuracy as the grid is refined.

using our method with the fine grid enclosing the cylinder held stationary at its time

t = 0 orientation. We note that the values produced by our method clearly lie within

or are very close to the ranges of values produced and cited by [54]. In particularly

the Strouhal numbers are all in very close agreement with both the numerical and

experimental results given in [54]. For Reynolds number 100, Figure 6.6 gives the

average values and ranges of CD, the range of CL, and Strouhal numbers as the grids

are refined.
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Figure 6.7: The errors and orders of accuracy of velocities for the vortex flow across
grid boundary example, with a rotating fine grid. Figures (a) and (c) show that the
error tends towards zero in both the L1 and L∞ norms implying self convergence,
whereas Figures (b) and (d) show that the error seems to be improving towards first
order accuracy as the grid is refined.

Table 6.5 gives the average value and range of CD, the range of CL, and Strouhal

number produced by a simulation with Reynolds number 100 using our method with

the fine grid enclosing the cylinder undergoing a specified rotation. We note that the

range for the coefficient of drag is slightly larger, potentially induced by the motion of

the grid enclosing the cylinder. Some artifacts of this type are to be expected before

the method has exactly converged. However, we found that under refinement the

range tended towards the values found in [54] and that produced by the simulation

with the stationary grid. The other values are nearly identical to those from the
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stationary case including the Strouhal number indicating that the motion of the grid

did not change the rate at which vortices were shed even though the grid rotated at

a different frequency.

In Figure 6.9 we plot the pressures when CL is at its negative extrema for all of the

tests. The plot for the Reynolds number 200 case shows results comparable to the

pressure plots from [54]. The pressure plots for the Reynolds number 100 case on

the stationary and rotating grids are also nearly identical further confirming that

the motion of the grid did not adversely affect the solution. We would also like to

emphasize to the reader that since the pressures produced in an incompressible flow

solver are equivalent to Lagrange multipliers enforcing the divergence free constraint,

that the forces are highly susceptible to oscillations even on high refined grids. See

[66, 98, 65] for further discussion.
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Figure 6.8: Vorticity isocontours for the flow past a circular cylinder example with
Reynolds number 200.

Object space domain ∆x ~s θ
1 [0, 38.4]× [0, 25.6] 25.6/n (0, 0) 0
2 [−2, 2]× [−2, 2] 4/n (9.6, 12.8) tπ/4
3 [11, 23]× [8.8, 16.8] 8/n (0, 0) 0

Table 6.3: Domains, cell sizes, positions (~s) and orientations (angle θ) of the three
grids used in our flow past a circular cylinder tests. n indicates the number of cells
along the y-axis on the coarsest grid. During parallel simulation the background
grid was allocated 24 processors, the fine grid enclosing the cylinder was allocated 16
processors, and the grid capturing the wake was allocated 24 processors.
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Figure 6.9: Pressure contours for the flow past a circular cylinder example taken
when the coefficient of lift was at its most negative value. Note that (d) agrees with
the Reynolds number 200 pressure plots from [54] and that the Reynolds number 100
pressure plots for the (a) stationary grid and (b) rotating grid are nearly identical.
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Reynolds Number CD CL St
100 1.3754± .0094 ±.3347 .1685
150 1.3551± .0260 ±.5219 .1868
200 1.3638± .0446 ±.6822 .1982

Table 6.4: The coefficients of drag and lift (CD & CL) and Strouhal numbers for
varying Reynolds numbers computed using our method with all grids stationary as
listed in Table 6.3 and n = 512. Note the good agreement of all values with those
produced and cited by [54].

Reynolds Number CD CL St
100 1.3755± .0108 ±.3387 .1684

Table 6.5: The coefficients of drag and lift (CD & CL) and Strouhal number for
Reynolds number 100 computed using our method where the rotation of the grid
enclosing the cylinder is specified as listed in Table 6.3 and n = 512. Note that the
values are close to those for the stationary case as listed in Table 6.4.

6.2.5 Two-dimensional flow past a rotating elliptic cylinder

In order to examine the case where the structure is moving we consider the case of

a two-dimensional rotating elliptic cylinder similar to the stationary elliptic cylinder

example from [54]. We discretize the domain [0, 25.6]×[0, 24] with three grids as listed

in Table 6.7 and as shown in Figure 6.10(a), and use the same boundary conditions as

in case of the circular cylinder. We place an elliptic cylinder with a long axis length

of 1 (also the characteristic length) and aspect ratio of .2 at ~ssolid = (9.6, 12) with its

long axis along the x axis in object space. The cylinder rotates with angular velocity

θsolid = π/4 which is matched by the enclosing fine grid. For Reynolds number 200,

Figure 6.11 gives the errors and orders of accuracy for our method computed by

comparing against a baseline simulation run at n = 1024. Note that both the L1

and L∞ errors tend towards zero implying self convergence. The orders of accuracy

tend towards first order for the L1 error and half order for the L∞ error. We note

that that errors are dominated by the errors at the cylinder’s boundary and could

be reduced by substituting a more accurate fluid-structure coupling scheme without

changing the way the intergrid boundaries are handled. See the example in Section

6.2.3 in order to examine the behavior of the errors when they are not dominated by
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n CD CL St
64 1.3865± .0138 ±.2871 .1580
128 1.3653± .0083 ±.3083 .1643
256 1.3716± .0092 ±.3295 .1674
512 1.3754± .0094 ±.3347 .1685
1024 1.3770± .0097 ±.3391 .1691

Table 6.6: The coefficients of drag and lift (CD & CL) and Strouhal numbers for
Reynolds number 100 computed using our method with all grids stationary as listed
in Table 6.3 and varying resolutions. The coefficients of drag and lift and Strouhal
numbers clearly tend towards the values produced and cited in [54]. Additionally, the
Strouhal numbers clearly demonstrate first order convergence as the grids are refined.
While the exact convergence regimes of the coefficients of drag and lift are less clear,
the difference between the values at successive resolutions is decreasing.

those in the structure boundary layer. The vorticity contours are plotted in Figure

6.10 and show good agreement at grid boundaries.
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Object space domain ∆x ~s θ
1 [0, 25.6]× [0, 24] 25.6/n (0, 0) 0
2 [−1, 1]× [−1.5, 1.5] 2/n (9.6, 12) tπ/4
3 [10, 22]× [8, 16] 4/n (0, 0) 0

Table 6.7: Domains, cell sizes, positions (~s) and orientations (angle θ) of the three
grids used in our flow past a rotating elliptic cylinder example. n indicates the number
of cells in x-axis on the coarsest grid. For all tests in this example n = 256. Note
that the second grid encloses the elliptic cylinder and rotates with the cylinder at an
angular velocity of π/4. During parallel simulation each of the three grids remains
unsubdivided and was allocated a single MPI process since the number of cells on
each grid were similar enough to not warrant any subdivision.

6.2.6 Two-dimensional flow past multiple rotating elliptic

cylinders

In our final two-dimensional example we consider three rotating elliptic cylinders in

order to demonstrate our method on a more complex example. We discretize the

domain [0, 9]× [0, 6] with six grids as listed in Table 6.8 and shown in Figure 6.12(a),

where grids 3, 4 and 5 each enclose and move with an elliptic cylinder as listed in

Table 6.9. Note that unlike previous examples the grids in this case were subdivided

for parallel computation also as described in the caption of Table 6.8. We use the

same boundary conditions as used in the case of the stationary circular cylinder. In

order to maximize the number of details produced we used zero viscosity. Figures

6.12 and 6.13 show the vorticity at times t = 5.3333 and t = 18.959. Notice the highly

detailed vortices coming off the tips of the elliptic cylinders and that they smoothly

transfer onto the coarse grids.
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(b) Vorticity, close-up

Figure 6.10: Vorticity isocontours for the flow past an elliptic cylinder example. Note
that the elliptical cylinder and the grid attached to it are rotating with angular
velocity π/4.
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(c) Error in L∞ norm
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(d) Order in L∞ norm

Figure 6.11: The error and order of accuracy of the velocities in the flow past rotating
elliptic cylinder example. Figures (a) and (c) show that the error tends towards zero
in both the L1 and L∞ norms implying self convergence. Figure (b) shows that the
L1 error tends towards first order accuracy and (d) shows that the L∞ error tends
towards half order accuracy under refinement.
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Object space domain ∆x ~s θ
1 [0, 9]× [0, 6] 6/n (0, 0) 0
2 [−1, 1]× [−1, 1] 1/n (2, 3) 0
3 [−0.1, 0.1]× [−0.25, 0.25] 0.4/n (1.75, 3.125) tπ/6
4 [−0.375, 0.375]× [−0.15, 0.15] 0.6/n (2, 2.875) tπ/8
5 [−0.25, 0.25]× [−0.1, 0.1] 0.4/n (2.25, 3.125) −tπ/5
6 [2.5, 8.5]× [1.5, 4.5] 3/n (0, 0) 0

Table 6.8: Domains, cell sizes, positions (~s) and orientations (angle θ) of the six grids
used in our flow past three rotating elliptic cylinders simulation where n = 256. Grids
3, 4 and 5 each enclose and track one of the elliptical cylinders as shown in Figures
6.12 and 6.13. During parallel simulation, a single MPI process was allocated to each
grid enclosing a cylinder. Grid 2 was allocated two MPI processes and placed over
the three cylinders in order to capture the interactions between them. Grid 6 was
added to in order to capture the wake and was allocated two MPI processes. The
background grid 1 was only allocated a single MPI process due to its relative low
resolution.

(Long axis length, Short axis length) ~ssolid θsolid

1 (0.125, 0.025) (1.75, 3.125) π/2 + tπ/6
2 (0.1875, 0.0375) (2, 2.875) tπ/8
3 (0.125, 0.025) (2.25, 3.125) −tπ/5

Table 6.9: Axis lengths, positions (~s) and orientations (angle θ) of the three elliptic
cylinders used in our flow past three rotating elliptic cylinders example. Note that
the long axis of each cylinder lies along the x axis in object space.
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Figure 6.12: Vorticity isocontours at time t = 5.3333 for the flow past multiple elliptic
cylinders example.
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Figure 6.13: Vorticity at time t = 18.958 for the flow past multiple elliptic cylinders
example.
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6.2.7 Three-dimensional smoke jet past rotating ellipsoid

In order to demonstrate that our method extends trivially to three dimensions we con-

sider a smoke jet impacting and dispersing around a rotating ellipsoid. We discretize

the domain [0, 9] × [0, 6] × [0, 6] using three grids as listed in Table 6.10 where one

grid encloses and moves with the rotating ellipsoid. The axis lengths of the ellipsoid

are .25, .042 and .125 which correspond to the x, y and z axes in object space respec-

tively. The location of the ellipsoid is ~ssolid = (1, 3, 3) and the orientation is specified

by a rotation of θsolid = t
√

2π/6 radians about the axis ~asolid = (1/
√

2, 0, 1/
√

2). We

specify inflow boundary conditions along the x = 0 side of the domain, where the

tangential components of the velocity are zero and the normal component is specified

as follows:

u(0, y, z) =


1 if |(y, z)− (3, 3)| ≤ .09

1− (|(y, z)− (3, 3)| − .09)/.03)) if .09 < |(y, z)− (3, 3)| < .12

0 otherwise

(6.9)

On the y = 0, y = 6, z = 0 and z = 6 sides of the domain we specify zero velocity

for all components and on the x = 9 side of the domain we use outflow boundary

conditions. We chose to use the velocity field defined in Equation 6.9 in order to

generate a smooth velocity field since the background grid cells were too large to

accurately resolve a circular source if the velocity field was discontinuous at the edges

of the source.

In order to visualize the flow we passively advect a scalar field. The scalar field is

controlled by specifying a single layer of cells along the x = 0 side of the domain

using the same function as used for the inflow velocity, i.e. φ(0, y, z) = u(0, y, z). In

the remainder of the domain, the value of the passive scalar is initially set to zero.

For passive scalar advection, the ghost cells on the computational boundary of the

domain are filled using constant extrapolation. In order to advect the scalar field we

use SL-MacCormack advection, and note that we revert to first order accuracy when

a local extrema is created as described in [97]. In Figure 6.14 we show the results
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for various times near the beginning of the simulation. Figure 6.15 shows the results

after the smoke has been allowed to propagate further into the domain. Note the

sharp details near the object and the smooth transition between grids.

Object space domain ∆x ~s θ,~a
1 [0, 9]× [0, 6]× [0, 6] 6/n (0, 0, 0) 0, (0, 0, 0)

2 [−.5, .5]× [−.5, .5]× [−.5, .5] 1/n (1, 3, 3) t
√

2π/6, (1/
√

2, 0, 1/
√

2)
3 [.7, 6.7]× [1.5, 4.5]× [1.5, 4.5] 3/n (0, 0, 0) 0, (0, 0, 0)

Table 6.10: Domains, cell sizes, positions (~s) and orientations (angle θ, axis ~a) of the
three grids used in our three-dimensional smoke jet past rotating ellipsoid example. In
this example we use n = 256. During parallel simulation we allocate 8 MPI processes
to grid 1, 6 MPI processes to grid 2 and 10 MPI processes to grid 3 in order to load
balance between two dual 6-core computers.
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(a) t=1.6667 (b) t=2.5

(c) t=3.5417 (d) t=5.4167

Figure 6.14: The passive scalar rendered as smoke for the three dimensional smoke
jet past rotating ellipsoid example.
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Figure 6.15: The passive scalar rendered as smoke at t = 13.958 for the three dimen-
sional smoke jet past rotating ellipsoid example.



Chapter 7

Fluid Structure Interaction

While many engineering and design problems can be modeled using static bodies,

in order to achieve accurate solutions certain phenomena require two-way coupled

solutions, where the fluid affects the structure in addition to the structure affecting

the fluid. In particular, since we are interested in solving large problems with solution

features on many scales it is important to use a monolithically coupled method with

enhanced stability. In this section we extend the Poisson equation discretization from

Chapter 4, which was used in the incompressible flow solver in Chapter 6, to support

monolithically coupled two-way fluid-structure interactions.

7.1 Ghost Cell Computation and Advection

As shown in Figures 8.7, 8.8, 8.6, 8.5 – 8.9 we often attach grids to solid objects.

Since each grid simply moves with its object preserving the relative placement of the

fluid degrees of freedom with respect to the object interface, the object only needs to

be rasterized once at the beginning of a simulation. This allows for a greater level of

user control in crafting the initial rasterization (see the note about the red plane in

Figure 7.1), especially as far as rasterized normals, watertightness, etc. are concerned.

98
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In order to compute the time step, we assume that objects move with constant linear

and angular velocity in order to approximate the time tn+1 locations of the grids

bound to these objects. However, the actual displacement during a time step will be

affected by acceleration under gravity and buoyancy, interaction with other objects

through contact, collision, and articulation, etc. Thus, the actual motion of the grid

may exceed that predicted by the time step computation at the beginning of the

time step. We handle this by dynamically filling additional ghost cell layers before

advection and found the added cost to be small. The remainder of the advection step

proceeds as in the kinematic case described in Section 6.1

7.2 Rigid Body Evolution

Currently we only address two-way coupled interactions with rigid bodies (although

extension to deformable bodies would be straightforward). We a similar approach to

those used in [40, 28]. The equations governing the motion of a rigid body are as

follows,

d~x

dt
= ~v ,

d~q

dt
= ~ω∗~q (7.1)

d~v

dt
= m−1f ,

d(Ma~ω)

dt
= τ (7.2)

where ~x and ~q are the position and rotation (to simplify the exposition, we use a

rotation matrix instead of a unit quaternion), ~v and ~ω are the linear and angular

velocity, f and τ are the linear force and torque, and m and Ma are the mass and

world space rotational inertia of the rigid body.

To numerically integrate rigid body positions we use the explicit second order accurate

approximation from [100] which is given as follows:

~xn+1 = ~xn + ∆t~v (7.3)

~qn+1 = R(∆t~ω + 0.5∆t2M−1
a (Ma~ω)× ~ω)~qn (7.4)
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where R(·) returns a rotation matrix given an angle scaled axis vector. Using this

position integrator we give the coupled integration scheme in Section 7.4 including

the velocity integration scheme.

7.3 Coupled Solver

In the case of kinematic objects we apply a Neumann boundary condition as described

in Section 6.1 in the pressure solve. In the two-way coupled case, we follow the

approach of [93] by using a constraint equation and Lagrange multiplier force for

each occluded face of the Voronoi mesh in order to enforce equality between fluid and

solid velocities. The constraint at the face between cells i and j is given as follows:

(Wun+1 − Jvn+1)i,j = un+1
i,j − ~ni,j(~vn+1 − (~xi,j − ~xn+1)× ~ωn+1) = 0 (7.5)

un+1
i,j is the velocity on the face between cells i and j, ~xi,j is the location of the

fluid velocity sample on the face between cells i and j. Note that W and J are the

assembled matrices that map from the fluid and solid velocities, respectively, to the

appropriate components of the velocity field at constrained faces. Similarly, v with

the appropriate subscripts corresponds to the assembled solid velocity vector. The

updated fluid and solid momentum update equations are given as follows:

un+1 = u∗ + β−1D̄T p̂ + β−1WTλ (7.6)

vn+1 = v∗ −M−1JTλ (7.7)

where v∗ are the explicit force integrated solid velocities, u∗ are the post advection

and explicit force integrated fluid velocities, and vn+1 and un+1 are the time tn+1

solid and fluid velocities, respectively. p̂ are the pressures scaled by ∆t, D̄ = VcD

is the volume weighted divergence, M is the solid mass matrix containing both mI

and Ma blocks, and λ are the coupling force Lagrange multipliers. Note that 1
ρ
G

has been equivalently replaced by −β−1D̄T where β are the Voronoi mesh dual cell
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fluid masses. The dual cell fluid mass is defined for each face as the face’s dual cell

fluid volume times the fluid density. Further note that Equation 7.6 is the update

equation for the faces on the Voronoi mesh and that non-coincident Cartesian faces

are updated as described in Section 6.1. In order to solve for p̂ and λ, Equations

7.6 and 7.7 are substituted into the divergence constraint D̄(un+1 + un+1
n ) = 0 and

Equation 7.5, giving the coupled system as follows:(
D̄β−1D̄T D̄−1β−1WT

Wβ−1D̄T Wβ−1WT + JM−1JT

)(
p̂

λ

)
=

(
−D̄(u∗ + un+1

n + β−1D̄T
d p̂d)

Jv∗ −W(u∗ + un+1
n )

)
(7.8)

where D̄d includes the terms of the volume weighted divergence corresponding to

faces between cells with solved pressure variables and cells with Dirichlet boundary

conditions.

7.3.1 Preconditioning

We applied a block diagonal preconditioner in which we partition the variables in two

sets corresponding to the pressures, and solid-fluid coupling/articulation Lagrange

multipliers. The diagonal block corresponding to the pressures D̄β−1D̄T was precon-

ditioned using an incomplete Cholesky (0-fill) factorization and the block correspond-

ing to the Lagrange multipliers, Wβ−1WT +JM−1JT was diagonally preconditioned.

When computing in parallel, the incomplete Cholesky preconditioner was applied in-

dependently on each computational node to the diagonal block corresponding to the

local pressures only. While this could reduce the effectiveness of the preconditioner,

for the problems we ran, which used up to 4096 processors, we did not experience any

significant drop in the effectiveness of the preconditioner. However, during tests we

observed that without the diagonal preconditioning of the Lagrange multiplier block,

the residual could remain large for the equations corresponding to the coupling con-

straints, even though the incompressibility of the fluid was adequately enforced. In

fact, the method would sometimes not even converge, resulting in spurious behavior

including objects incorrectly sinking. However, This problem is not a result of our
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pressure discretization in particular and occurs with many monolithic solid-fluid cou-

pling methods as the resolution is increased. On the other hand, we experienced no

convergence issues or spurious behavior after applying the diagonal preconditioner.

7.4 Coupled Integration Scheme

We apply a slightly modified version of the time integration scheme from [94] where we

replace the backward Euler integrator in the position integration step with a forward

Euler integrator in order to eliminate the additional coupled solve. The resulting

scheme proceeds as follows:

1. Position Step

(a) Handle collisions between rigid bodies by modifying (~vn, ~ωn)→ (~̂vn, ~̂ωn).

(b) Integrate the solid velocities with gravity and contact forces as (~̂vn, ~̂ωn)→
(~̃vn+1, ~̃ωn+1).

(c) Explicitly integrate the solid positions (~xn, ~qn)→ (~xn+1, ~qn+1) using

(~̃vn+1, ~̃ωn+1) and Equations 7.3 and 7.4.

(d) Advect the fluid velocities un → û.

2. Velocity Step

(a) Integrate the solid velocities with body forces, collision forces, gravity, and

contact forces from (~̂vn, ~̂ωn)→ (~v∗, ~ω∗).

(b) Integrate the fluid velocities with gravity û→ u∗.

(c) Solve the coupled system in Equation 7.8 for p̂ and λ.

(d) Update the solid velocities (~̂vn, ~̂ωn)→ (~vn+1, ~ωn+1) using Equation 7.7.

(e) Update the Voronoi mesh fluid velocities using Equation 7.6 and then
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update the remaining Cartesian grid velocities as described in Section 6.1

as u∗ → un+1.
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Figure 7.1: Resolving a three dimensional glider (yellow) with a number of Chimera
grids gives it the ability to fly in a large domain. The solid line shows the parabolic
path a ballistic rigid body would take if it did not fly. The blue glider is simulated with
only the background grid and falls almost immediately. Meanwhile, the red and green
gliders each use only two of the six grids attached to the yellow glider. Although the
green glider crashes, for illustration purposes, we can carefully adjusted the position
and orientation of the red glider’s two grids allowing it to fly. Note that this hand-
picked rasterization will remain constant throughout the entire simulation since the
grids move with the glider enabling the user to handcraft efficient rasterizations that
improve the physical realism. We emphasize to the reader that we did not specially
tune the positions of the grids in the case of the yellow glider as it was well resolved
by its finer grids. Slight perturbations to the the placement of its grids did not alter
the glider’s behavior.



Chapter 8

Free Surface Flow

In free surface flow problems the liquid part of the domain is modeled as a fluid

while the other half of the domain is modeled as a constant pressure fluid. This

approximation is useful for many problems, such as water simulation, where the effect

of the fluid in the air phase is extremely light and has little effect on the solution in

the liquid phase. Moreover the techniques use to track the free surface and solve

equations in the liquid phase are the building blocks for methods capable of fully

modeling multiple phases in a single simulation. Thus in this section we extend the

incompressible flow solver from Chapter 6 to support free surfaces by extending the

particle level set method to overlapping grids and address a number of the issues that

arise as a result of the inconsistent fluid representations in overlapping regions.

8.1 Level Set Method

In order to represent and evolve the free surface on overlapping grids we extend the

particle level set approach of [31]. On each grid we store the level set φ values at cell

centers as in the single grid case. At the beginning of each time step we fill the the φ

ghost cells using the scheme from Section 2.2, and then apply the first order accurate

105
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Figure 8.1: A single water drop impacts a flat water surface generating several circular
waves. The large domain allows these waves to propagate a long distance without
reaching the domain boundaries. Note that the waves pass from one grid to the
next without visible artifacts. The bottom right figure is the same as the bottom left
except that we zoom the camera back even further in order to show the computational
domain and the three grids used in the simulation.

ALE semi-Lagrangian advection scheme from Section 3.2.1. After advection, we again

fill the ghost cells before reinitializing the interface independently on each grid using

the fast marching method and higher order interface initialization as described in

[69]. Note that we fill enough ghost cell layers to cover the bandwidth used by the

fast marching method. This allows us to march over both the interior and ghost

cells in a single process and achieve the correct result on the interior of the domain.

When using the fast marching method, which marches only in a limited band near
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Figure 8.2: Many water droplets in the shape of armadillos are dropped into still
water. Each armadillo is enclosed by two moving grids: one tightly wrapped to
resolve the armadillo as it falls and one slightly larger to catch the resulting splash.
Our Chimera grid strategy allows detailed resolution of the small armadillo droplets
even in this large domain.

the interface, the stopping distance on the fine grid can be too small to guarantee a

valid interpolation stencil for filling overlapped cells as illustrated in Figure 8.3 (Left).

However, this only occurs when the grading between grids is large and can be avoided

by increasing the stopping distance on the fine grid so that at least cells next to the

interface have correct values. In order to prevent the level set representations from

drifting apart in overlapping regions on different grids, we inject the φ values in any

overlapped cells as described in Section 2.2. After injecting to these cells we need to

perform a second reinitialization step in order to guarantee valid values through to the
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Figure 8.3: A free surface is shown on two grids as a black line with the filled cyan
area indicating the fluid phase. When reintializing the level set after advection and
extrapolating the velocities across the interface after the pressure solve and velocity
update, values are computed for only a limited band of cells around the interface.
The limits of these bands are drawn as dashed lines (with the color indicating the
corresponding grid). Note that the band is proportionally smaller on the fine grid.
(Left) When interpolating values for ghost and overlapped cells invalid values can
be produced. Since the cell on the coarse grid indicated by the black dot if beyond
the band around the interface on the fine grid an incorrect value is computed. An
additional reinitilization step is used to compute new valid values. (Right) In order
to compute a second order accurate pressure discretization on the free surface, the
φ values for cells on either side of the interface are used to compute the dual cell
volume fraction. Due to the unstructured connectivity between grids on the Vonoroi
mesh, cells on coarse grids along the interface may be adjacent to cells on the fine
grid outside of the reinitialization bandwidth as illustrated by the two cells with black
dots at their cell centers. We instead compute an updated φ value for the cell on the
fine grid by linearly extrapolating from the cell on the coarse grid.

stopping distance. This time, after filling the φ values in ghost cells, we reinitialize

the level set values in the overlapped cells only in order to minimize dissipation.

In order to apply a second order accurate free surface boundary condition in the

solver, a valid level set value is required at each cell along the free surface. Due

to the limited bandwidth used in the fast marching method and the unstructured

connectivity between grids on the Voronoi mesh used in the pressure solve, certain

coarse grid cells may neighbor fine grid cells which do not have valid φ values as

illustrated in Figure 8.3 (Right). For each of these cells, we extrapolate a φ value
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from a neighboring cell on the Voronoi mesh by computing ∇φ at this neighboring cell

using values from this cell’s intrinsic Cartesian grid. The neighboring cell must both

have a valid value of φ and a valid value of∇φ, and if more than one neighbor has valid

information we use the neighbor with the smallest value of |φ|/∆x representing the

value closest to the interface with the most accurate information. After computing

these updated φ values, we interpolate values for any Cartesian cell centers that

were removed during the Voronoi mesh construction as well as a one cell thick layer

of ghost cells. These cells are filled using barycentric interpolation on the Delaunay

triangle mesh dual of the Voronoi diagram. Without this interpolation step to enforce

consistency between the Voronoi mesh and the Cartesian grid level set representations,

water could become stuck along grid boundaries on the coarse grid since the fluid

in these cells does not directly influence the pressure solution. We perform a final

reinitialization step in these interpolated cells in order to guarantee that they are

valid through to the stopping distance.

8.1.1 Particle Level Set Method

We store a number of layers of particles along the free surface as is typical in the

single grid case. After filling the ghost cells we seed particles in each ghost and over-

lapped cell using the updated φ values. While one could instead exchange particles in

this step, seeding new particles in ghost cells each time step prevents large particles

originating from a coarse grid from adversely effecting the level set function on a fine

grid. Following seeding, the majority of the particle advection and level set correction

steps remain the same as those in the single grid case. We advect the particles using

a second order accurate Runge-Kutta scheme. Subsequently, the particles are used

to correct the φ values both after advection and after the first reinitialization step

only. Recall that the first reinitialization modifies the entire grid while the second

reinitialization only modifies overlapped regions.

At the end of each time step we flag any particles that have crossed the interface

by more than their radius (or a small threshold) and designate these as “removed
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Figure 8.4: A kinematically driven grid moves in and out of still water without
disturbing the surface. Throughout the entire simulation the water velocity properly
remains within rounding tolerance of zero. The left figure shows the initial state and
the right figure shows the water surface unchanged after 600 frames.

particles”. This operation is performed in both the ghost and interior regions of each

grid. We discard any removed particles that are within the interpolation stencil of an

overlapped interior cell. These particles in overlapped regions represent underresolved

features on the coarse grid which are simulated more accurately on the fine grid. We

keep the removed particles generated in the ghost regions of each grid as they allow

us to track the mass loss which can occur at grid boundaries. This approach allows

a thin feature on a fine grid to move onto a coarse grid and be tracked as ballistic or

passively advected particles for subsequent rendering, instead of simply having the

feature disappear at a grid boundary. Finally, before ending the time step, we delete

all the remaining non-removed particles in the ghost regions of each grid.

8.1.2 Pressure solver

Water surfaces are particularly sensitive to the approximations made during dis-

cretization, and we found that it was essential to solve the hydrostatic case exactly

as illustrated in Figure 8.4 in order to prevent spurious vortices from forming at grid

boundaries. This was in fact the motivation for our Voronoi diagram pressure solver.
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For our single-phase solver in Section 6.1, the velocity for each Voronoi mesh face

not coincident with a Cartesian grid face was interpolated from the finest available

Cartesian grid. In certain cases, we found that these interpolated velocities caused

noticeable artifacts at grid boundaries in free surface simulation. This was particu-

larly evident when the velocity for a Voronoi face between to two fine grid cells was

interpolated from a much coarser grid resulting in large error in the velocity. In order

to avoid this problem, we first compute the cell center velocity at each adjacent cell

centers by averaging on their respective Cartesian grids before taking an average of

these cell center velocities to compute the Voronoi mesh face velocity. We further

modify this in the case of Voronoi faces along the free surface as follows. Similar to

the issues described for φ values in Section 8.1 along boundaries between coarse and

fine grids, certain cells may not have valid velocities since they are beyond the free

surface velocity extrapolation bandwidth. Hence, for these faces we take the velocity

from the incident water cell rather than averaging from both cells. We found that

these modifications produce a much more accurate velocity and do not cause any

noticeable artifacts along grid boundaries.

In order to handle free surfaces in the pressure solver, we set a constant Dirichlet

pressure boundary condition in air cells and use a second order accurate cut-cell ap-

proach [33, 4] at each face between an air cell and a water cell. This is straightforward

to apply recalling that we ensured a valid φ value in each cell through extrapolation

at the end of Section 8.1.

After computing the pressure, we update both the Voronoi and Cartesian grid face

velocities by modifying the approach described in Section 6.1 to compute correct

values for Cartesian faces near the interface that are not coincident with a Voronoi

face. After computing the cell center velocities, we extrapolate these velocities across

the level set water interface on the Voronoi mesh in order to guarantee a valid in-

terpolation stencil for removed water cells. This extrapolation is accomplished using

two Jacobi style iterations across the entire mesh where the velocity is computed by

averaging the velocities from all adjacent cells with valid velocities. When computing

the final Cartesian grid face velocities we average from the neighboring Cartesian grid
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Figure 8.5: A kinematically driven propeller spins with a number of attached Chimera
grids. The grids move and rotate with the rigid body frame of the propeller.

cell centers using only a one sided average in the case that only one of its neighbors

is a water cell (with the other being air).

After updating each water face, we fill the ghost cells and extrapolate the Cartesian

grid velocities into the air using the fast velocity extrapolation of [32] independently

on each grid. Note that we may not be able to interpolate a valid velocity for every

ghost face depending upon the discretization of the overlapping grid. We handle this

case by updating the invalid ghost cell faces in the extrapolation procedure as if they

were air faces.

8.2 Rendering

In order to render the free surface without visible cracks at grid boundaries we modify

the raycasting approach used in [32] to intersect a composite signed distance function.

For each sample location the composite signed distance function is computed by

considering each overlapping grid in order from coarsest to finest and blending the

φ value from the current grid with the φ value computed from blending the coarser

grids. The blending fraction is found by scaling and clamping the the signed distance
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function to the grid boundary so that the fraction is 0 at the edge of the grid’s

interpolation domain and 1 several cells within the grid. While the resulting composite

φ function is no longer a strict signed distance function, the implicit surface defined

at φ(~x) = 0 is smooth and by blending and normalizing the normals in a second

step using the same procedure, rendering artifacts are avoided. Note that the same

blending procedure is used to define a continuous density function when rendering

the smoke in Figures 6.14 and 6.15.

In Figure 8.5 we additionally render the removed negative particles as transparent

spray by directly ray tracing the particles as metaballs which are blended with the

level set. In Figures 8.8 and 8.9 we render the removed negative particles as a density

field defined as the sum of kernel functions centered at each particle. Additionally, a

Phillips spectrum was used to bump map the water to give it added detail as described

in [108].

8.3 Results

We provide relative timing data for the propeller and island examples in Table 8.1.

Note that while the overhead of the added second grid is significant, it does not

dominate the simulation time and improves under refinement. Since producing the

timing data in Table 8.1 further optimization of the implementation has significantly

reduced this overhead. More recent scalability results for the single phase version of

the code are available in Section 9.

In the example shown in Figures 8.8 and 8.9, 17 grids were used with a total of 6

million cells. By extending the finest cell’s ∆x to the background grid, the effective

resolution of the simulation was 36500× 3650× 36500. While the effective resolution

could be made arbitrarily large by decreasing the size of the smallest cell, it does give

a sense of the disparate scales being resolved.
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Figure 8.6: Pouring water drives a water wheel via two-way solid-fluid coupling. The
domain around the water wheel buckets is resolved by eight grids that rotate with
the wheel in order to resolve the thin bucket walls. In addition, a single larger grid
encases the entire wheel and also rotates in the same rigid body frame as the wheel.

Example Cores
Pressure Solve

and Update
Meshing Advection

Delete

Particles

Reseed

Particles

Filling Ghost and

Overlapped Cells

Extrapo-

lation

Entire

Time Step

Island
1 310 318 157 51 41 23 12.3 914

39 29 24 17 4.2 5.2 3.3 2.2 85

Propeller
1 109 114 50 2.7 8.5 7.2 5.2 299

23 17 17 8.7 .19 .87 1.8 1.5 47

Table 8.1: Timing data (in seconds) for the island and propeller examples. The table
includes timing only for the major steps of the algorithm.
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Figure 8.7: The top two figures show a two-way coupled rigid body ship that moves
under its own power due to the rotation of two articulated propellers. The lower
left figure illustrates that removing the grids surrounding the propellers limits the
realism of the simulation resulting in a ship that churns water but cannot propel
itself forward. The lower right figure shows that removing the grids around the ship
results in a loss of buoyancy and the ship falls through the large grid sinking to the
bottom of the ocean.
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Figure 8.8: Two ships in stormy seas near Longfellow island. We refine the domain
near the ships by placing grids in their object spaces to add detail and allow them to
propel themselves using their two-way solid-fluid coupled propellers.
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Figure 8.9: Another view from the large scale island example in Figure 8.8. Each
ship is driven by two propellers and uses the same attached grids as in the case of the
single ship example in Figure 8.7. We initialize the fluid surface and velocity with
a large number of rolling waves which slowly move across the domain. As a result
of the large domain, the simulation does not require seeding additional waves using
boundary conditions or external forces within the time scale of the simulation. The
top two figures show the spray produced by the ship propellers when they are exposed
on the surface of the water, noting that both figures are of the same frame. The lower
two figures show the initial grid placement around the ships and island.
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Scalability

In order to evaluate the scalability of our method, we performed a number of tests

in which we ran a modified version of the smoke jet example from Section 6.2.7 and

shown in Figures 6.14 and 6.15. In order to examine the scalability of the two-

way coupled solve this test was modified to allow the ellipsoid to move dynamically

with the finest grid attached to the frame of the ellipsoid. We ran the test on the

Texas Advanced Computing Center’s (TACC) Stampede high performance computing

cluster. The cluster consists of 6400 nodes each with two 8-core Intel Xeon E5-2680

processors running at 2.7 Ghz with 32 Gb of shared memory. The nodes are connected

using a Mellanox FDR InfiniBand network.

Table 9.1 gives the timing break downs for the test run with both 67 and 537 million

cells. At the lower resolution good scalability is seen through 1024 cores and at

the higher resolution reasonable scalability was seen through 4096 cores. Of note is

that every operation except for the Delaunay meshing scales reasonable well. This is

primarily due to the fact that the Delaunay meshing code is least optimized part and

that the cost could be reduced by up to an order of magnitude by further work. Also,

since the meshing occurs only on computational nodes containing parts of the domain

along grid boundaries, simple doubling the number of nodes will not decrease this cost

by half. As a result the weak scalability of this part of the code may not be ideal.
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However, since we want to solve problems where the memory on each node is fully

utilized, the strong scalability is typically of more interest in which case the meshing

code will scale properly. Communication costs when filling ghost and overlapped cells

as well as when communicating in the linear solver are minimal. However, previous

experiments on our local cluster showed that these costs are much higher when using

an ethernet based interconnect even when using a much smaller number of nodes.

During tests, particularly when using 2048 or 4096 cores, the instability of the simu-

lation was significantly increased. Often when using 4096 cores the simulation would

fail to start citing an MPI initialization error such in the case when one or more

nodes did not respond. Additionally, during simulation, spurious crashing was also

encountered. These observations bring up one of the critical problems that will be

faced as the system is scaled up. This is how can reliability be improved such that

performance is not sacrificed. While checkpointing allows for redundant simulation,

as more and more nodes are used the time between failures will become so small that

very little progress will be made due to the relatively high time required to restart at

the previous checkpoint. As a result, other approaches will need to be adopted, such

as using redundant nodes or by duplicating computations using excess cpu and gpu

resources. For example, if one was to duplicate the computation performed on each

node on a second node, then the probability of losing any particular part of the simu-

lation would be squared. Alternatively, if one was to only duplicate the computations

on coarse grids, then data lost in the case of a fine grid node could simply be replaced

by interpolating from a coarser grid, albeit at some loss of accuracy. Performance

issues were also encountered in these cases as substeps would occassionally take much

longer to complete, most likely due to conflicting work loads on a single node.

The current implementation of this code in PhysBAM is written in C++ and directly

calls MPI for parallel computation. In order to allow the system to scale and deal

with many of these reliability issues, the code should be modified to use a framework

capable of automatically responding to such failures. Many of these issues would be

exaggerated in a cloud computing environment.
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Number of Cells Cores
Pressure Solve

and Update

Meshing
Advection

Filling Ghost and

Overlapped Cells

Entire

Time Step

Cores ×
Time StepVoronoi Delaunay

67× 106

64 105.26 9.10 10.04 5.44 0.64 132.62 8488

128 69.26 5.85 9.28 2.93 0.52 74.28 9508

256 27.80 3.64 4.98 1.50 0.31 39.40 10086

512 13.89 2.66 4.63 0.84 0.25 23.29 11925

1024 6.98 1.73 4.42 0.51 0.21 15.09 15452

2048 4.21 1.20 4.53 0.57 0.28 12.14 24863

4096 3.17 1.45 3.37 0.94 0.27 11.12 45548

537× 106

512 113.27 9.57 18.81 5.79 0.98 153.81 78751

1024 57.42 6.05 18.62 3.21 0.77 90.25 92416

2048 31.92 4.41 17.96 1.90 0.67 60.87 124661

4096 17.51 3.17 13.66 1.68 0.53 40.62 166379

Table 9.1: Timing data (in seconds) for the smoke jet example shown in Figures
6.14 and 6.15 modified to allow the ellipsoid to move dynamically and be two-way
coupled with the fluid. Note that the meshing time is broken down into the times
used to generate the Voronoi tesselation and to generate the Delaunay mesh used for
interpolation.
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Conclusion and Future Work

This dissertation has presented a novel adaptive scheme for simulating the incompress-

ible Navier-Stokes equations allowing multiple overlapping and arbitrarily translated

and oriented Cartesian grids to be used as a composite domain. We have developed

both first and second order accurate ALE semi-Lagrangian advection schemes allow-

ing each grid to be advected independently by exchanging boundary conditions in

ghost cells. We have developed a monolithic second order Poisson equation solver

using a Voronoi diagram spatial discretization in order to combine the grids into a

single continuous symmetric positive definite discretization. In order to compute the

Voronoi diagram we have developed a simple and robust meshing scheme which scales

well in parallel implementations by requiring that the geometry only be computed at

intergrid boundaries. By utilizing a Voronoi diagram, our discretization uses second

order accurate centered pressure differences which are orthogonal to their correspond-

ing faces allowing hydrostatic cases to be solved exactly. We have also extended the

Poisson solver to solve diffusion equations on cell centers directly and to solve for

viscous forces on staggered velocity fields. By exploiting a Chimera grid approach

we have preserved the accurate finite differences, lightweight cache coherent memory

layouts and straightforward domain decomposition aspects of Cartesian grids. Unlike

AMR approaches which are generally limited to axis aligned grids only, we are able to
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efficiently represent non-grid aligned features. In some ways this is analogous to the

second order accurate piecewise-linear interface calculation (PLIC) scheme of volume

of fluid (VOF) methods as opposed to the first order simple line interface calculation

(SLIC) scheme (see [83, 52]).

We have also proposed a set of modifications for allowing using the particle level set

method on overlapping grids for free surface problems. We included a number of

examples which demonstrated the ability of the method to produce accurate physical

behavior in two-way solid-fluid coupling problems by locally refining space near solid

objects.

There are numerous avenues for future research. We note that our pressure projec-

tion introduced some artifacts in the vorticity along intergrid boundaries when the

solution on the Voronoi discretization is mapped back to the Cartesian grids. For

graphics applications, this could limit the use of vorticity confinement, although the

velocity field is visibly smooth and first order convergent. This mapping between the

Voronoi mesh and Cartesian grids also did not guarantee zero divergence at Cartesian

cells with interpolated faces. Examining this property more closely could certainly

lead to a more accurate mapping that addresses both issues. Certain free surface flow

examples also contained visual artifacts, particularly as waves travelled along grid

boundaries in which case waves were clearly more resolved on the fine grid causing a

visually noticeable grid seam when rendering with a highly specular shader. Conser-

vative advection (see e.g. [67, 39]) also poses interesting issues since one would need

to account for the duplication of values in overlapped regions in order to guarantee

conservation. As we continue to scale our solver to large systems we expect the linear

system to become the limiting factor particularly as the incomplete Cholesky precon-

ditioner becomes less effective since we compute it only on the diagonal block local to

the computational node when computing in parallel. Multigrid preconditioners hold

significant promise and we believe that our SPD formulation could greatly ease their

implementation for more complicated geometries.
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Overall, although our approach loses some flexibility while compared to fully un-

structured methods, it strikes an optimal balance between structure and adaptivity,

allowing large scale simulations with features on many scales to be concurrently simu-

lated while utilizing modern computer hardware and distributed computing resources.

Figures 8.8 and 8.9 demonstrate the potential of the method.
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