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Interpenetration Free Simulation of Thin Shell
Rigid Bodies

R. Elliot English, Michael Lentine, Ronald Fedkiw

Abstract—We propose a new algorithm for rigid body simulation that guarantees each body is in an interpenetration free state, both
increasing the accuracy and robustness of the simulation as well as alleviating the need for ad hoc methods to separate bodies for
subsequent simulation and rendering. We cleanly separate collision and contact resolution such that objects move and collide in the
first step, with resting contact handled in the second step. The first step of our algorithm guarantees that each time step produces
geometry that does not intersect or overlap by using an approximation to the continuous collision detection (and response) problem
and thus is amenable to thin shells and degenerately flat objects moving at high speeds. In addition we introduce a novel failsafe which
allows us to resolve all interpenetration without iterating to convergence. Since the first step guarantees a non-interfering state for
the geometry, in the second step we propose a contact model for handling thin shells in proximity considering only the instantaneous
locations at the ends of the time step.

Index Terms—Computer Graphics, Rigid Bodies, Thin Shells

✦

1 INTRODUCTION

R IGID body simulation has been popular in com-
puter graphics for over two decades, dating back

to [1]–[5]. Later, authors focused on efficiency ( [6], [7])
and explored the concept of plausible motion [8], [9].
These authors asserted that collisions do not necessarily
have to be handled in consecutive order to achieve
plausible results. More recently authors have focused
on a variety of topics such as magnetism [10], two-
way coupling with deformable objects [11], sampling
rigid body behaviors [12], energy conservation [13], and
synthesizing sounds from fracturing bodies [14]. There
are also a number of commercially available and open
source software packages such as Bullet, ODE, Havok,
PhysX, etc. Although these techniques have proven to
work well for many applications, they do not guarantee
an interpenetration free state, and thus cannot handle
complex arbitrarily thin geometry (e.g. thin shells -
see Figure 1). In order to achieve this goal, we have
developed robust algorithms for both collision detection
and response.

Rigid body simulation involving volumetric bodies
has been extensively studied in the literature. Most prior
methods use interference detection to compute collisions
and contacts, such as [15]–[20]. While these methods are
reasonably efficient for relatively thick bodies, when the
thickness approaches zero, collisions and contacts can be
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easily missed as bodies can move large distances through
one another in a single time step. Many methods, such as
[20], require a convex decomposition in order to compute
distances and normals. However, thin shells cannot be
broken in convex components other than into groups of
exactly coplanar faces. Furthermore, when computing
a response to the detected collisions and contacts, it
becomes unclear as to which direction the bodies should
be moving once they have partially passed through one
another. To avoid this scenario, a time step restriction can
be introduced which prevents bodies from moving more
than half the thickness in a single time step. This leads
to a trade off between accuracy and efficiency where
highly thickened bodies can be simulated using fewer
time steps but incur a large error, while only slightly
thickened bodies require many time steps increasing
computational cost.

[21] introduced continuous collision detection for
rigid bodies in order to resolve the issues with inter-
ference testing. However, their response algorithm [22]
neither handles friction nor guarantees an interpenetra-
tion free state. [23] presented an alternative continuous
collision response algorithm which implicitly computes
contact forces in conjunction with deformable body
constitutive forces. This method uses a mixed linear
complementarity problem (MLCP) which can be solved
efficiently for deformable bodies due to the local nature
of the resulting forces. However, for rigid bodies, contact
forces are generally non-local and thus this method
becomes infeasible for even moderately sized stacks of
bodies. In fact, using a Gauss-Seidel approach as in
[23] and other methods (see e.g. [15]), can require an
intractable number of iterations to converge when the
constraints need to be exactly satisfied as is required to
prevent interpenetration. The authors of [24] have also
addressed the continuous collision response problem,
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choosing to apply penalty forces, however, they do not
guarantee an interpenetration free state. As a result,
it remains an open problem to find an algorithm for
computing a set of impulses which both terminates
in a fixed number of iterations and plausibly resolves
all collisions within a single time step for large scale
stacking problems.

The authors from [25] considered similar problems but
since they let their objects deform, they were unable
to guarantee a final interpenetration free state for the
undeformed geometry. This leads to issues with collision
response, contact modeling and prolonged unresolved
interpenetrations. Allowing the geometry to deform re-
quires either the rendering of the deformed copies of
the geometry or accepting severe visual artifacts due
to potentially large interpenetrations - note that this is
exacerbated by large velocities and rotational motion.
Furthermore, subsequent simulation of the rigid bodies
is difficult when large deformations occur, as it is unclear
that the retargeting of the rigid body velocities will lead
to plausible motion.

In order to handle thin shells efficiently, our method
uses a linearized continuous collision detection algo-
rithm based upon the continuous collisions detection
algorithms typically used for cloth and deformable sim-
ulation [26]–[28]. To handle these collisions and contacts,
we follow [15] and cleanly separate the processing into
two steps. We process collisions by applying a sequential
impulse approach derived from [15]. To process contact,
we apply two separate phases to handle static and
dynamic contact. In static contact, we consider the bodies
in an instantaneous configuration and generate contact
points by finding nearby feature pairs on objects in
this configuration. We then solve for contact forces at
these contacts using a modified version of the Projected
Gauss Seidel method and shock propagation schemes
introduced in [29]. In dynamic contact, we consider
the motion of bodies over the timestep by modifying
and reusing the procedure from our collision processing
routine to apply inelastic contact forces instead of elastic
contact forces. However, unlike collision processing, it is
critical to resolve all contacts to prevent interpenetration.
This unfortunately leads to an iterative problem which
can take a prohibitive number of iterations to converge.
We note that our use of dynamic and static when differ-
entiating these two types of contact refers to whether we
detect contacts using an instantaneous configuration of
bodies or by using their swept geometry. In both steps
we apply static and dynamic friction.

In order to prevent our algorithm from iterating in-
definitely, we limit the number of collision and dynamic
contact iterations and then apply a novel failsafe that
clusters together bodies to resolve any remaining in-
terpenetrations. In contrast to [27], we cluster bodies
using a kinematic rigidification that preserves their rel-
ative motion. While they do not implement one, [23]
ultimately says a failsafe is necessary to eliminate all
collisions in complex enough cases. [30] also proposes

Fig. 1. Degeneratly thin triangles are dropped on several
fixed pegs and allowed to stack both on the ground and
lying against the pegs.

to resolve all collisions by implicitly formulating a linear
system by sequentially adding each remaining collision
as an equality constraint until no further collisions occur.
However, for rigid bodies these rigidifying failsafes tend
to fully rigidify large systems of bodies, particularly in
the case of stacks of bodies, producing non-physically
plausible results. Furthermore, in the case of [30] it
would also take a significant amount of time to compute
the necessary SVD due to the system’s singularity.

Finally, after combining our method with [13], we no
longer have a time step restriction in order to achieve sta-
ble and physically plausible simulation of rigid bodies.
Note that while this can be achieved without using our
method by adaptively thickening bodies as discussed
above our method is necessary to guarantee an inter-
penetration free state when bodies have a fixed or zero
thickness.

2 TIME EVOLUTION

The equations governing the motion of a rigid body are
as follows,

dx
dt

= v ,
dq
dt

= ω∗q (1)

dv
dt

= m−1f ,
d(Maω)

dt
= τ (2)

where x and q are the position and rotation (to simplify
the exposition, we use a rotation matrix instead of a unit
quaternion), v and ω are the linear and angular velocity,
f and τ are the linear force and torque, and m and Ma

are the mass and world space rotational inertia of the
rigid body. For convenience, we later refer to generalized
positions, velocities and masses of bodies using X (a
rigid body frame as a transformation matrix), V (the
linear and angular velocity vectors concatenated), and M
(the linear and angular inertia blocks as a block diagonal
matrix) with the appropriate subscripts.
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To numerically integrate the position we use the ex-
plicit second order accurate approximation from [11]
which we give below for completeness.

xn+1 = xn + ∆tv (3)

qn+1 = R(∆tω + 0.5∆t2M−1
a (Maω)∗ω)qn (4)

where R(·) returns a rotation matrix given an angle
scaled axis vector. This position integration scheme is ap-
plied multiple times throughout our overall integration
scheme, e.g. when handling unconstrained motion and
when re-evolving bodies during collisions and dynamic
contact. Note that this second order accurate scheme is
used to increase the accuracy at a small cost. However,
the scheme could also easily be replaced by a first order
accurate method.

In this section we present the time integration details
of our rigid body solver. We refer the interested reader to
related works [11], [15], [31], [32] for other approaches.
The basic time integration algorithm we use proceeds
using a variant of [15] which first handles collisions in
Step 1. Steps 2-5 compute temporary velocities which are
processed by a first contact step which is subsequently
used to produce interpenetration free updated positions
and is then thrown out. Steps 6 and 7 integrate explicit
and body forces, and then apply a second contact step
to produce the final velocity.

the velocity from Steps 2-5 is discarded and
This proceeds as follows:

1) Modify vn to v̂n with collisions

2) vn+1/2 = v̂n + ∆t
2 a(tn+1/2, xn, vn+1/2)

3) Modify vn+1/2 with static contact

4) x̂n+1 = xn + ∆tvn+1/2

5) Modify x̂n+1 to xn+1 with dynamic contact and
failsafe

6) vn+1 = v̂n + ∆ta(tn+1/2, xn+1, vn+1/2)
7) Modify vn+1 with static contact

where a(·) returns the acceleration due to body forces
and explicit forces, such as gravity.

In Step 1 the v̂n velocities are initially set to be equal
to vn and are iteratively updated using our collision pro-
cessing algorithm (see Section 3) by finding and handling
collisions considering the motion of bodies between their
time n and temporary time n + 1 positions which are
found by explicitly integrating the time n positions using
the most recent update of v̂n. Step 2 adds explicit forces
in order to find temporary time n+1/2 velocities. Step 3
applies static contact (see Section 4.3) to the temporary
time n + 1/2 velocities using contacts found with the
bodies in their time n positions. This static contact step is
important to the efficiency of our algorithm since it lifts
the computational burden from the following dynamic
contact processing step by preventing the majority of
interpenetration. Step 4 integrates the positions using the
time n + 1/2 velocities. Step 5 applies dynamic contact
(see Section 4.1) and the failsafe (see Section 4.2) to the
positions from Step 4 to produce the final time n + 1

Fig. 2. A stable stack of blocks are launched by a catapult
hit by a fast moving block. (Bottom-Right) [15] allows the
block to pass through the catapult. (Top) Our algorithm
catches the collision.

positions. Step 6 integrates the post collision velocities
by adding explicit and body forces to produce candidate
time n + 1 velocities. Step 7 applies static contact to the
candidate time n+1 velocities using contacts found with
the bodies in their time n+1 positions (and only between
pairs of bodies processed during collision response in
Step 1 in order to prevent collisions being missed) to
produce the final time n + 1 velocities.

Note that typically, collision and contact detection
would be performed once per time step. However, to
guarantee an interpenetration free state, we must recom-
pute the pairs of colliding bodies and their collision and
contact points after the positions have been updated to
reflect the impulses applied due to previously resolved
collisions and contacts. This is because it is possible that
using a collision unaware position integration scheme
to update the positions can lead to a new configuration
with interpenetrations. It is important to emphasize that
processing additional pairs of interacting bodies in dy-
namic contact and the first static contact step does not
lead to missed elastic collisions.

3 COLLISIONS

There have been a number of papers on the plausi-
ble simulation of rigid bodies [8], [33]–[35]. Similar to
these methods, we do not try to treat every collision in
chronological order to obtain the exact analytic solution.
Instead, we work towards a plausible solution which
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a
b

Fig. 3. Two contact points and their normals found by
using level set depth queries for two boxes in resting
contact on top of one another. The contact normal for
point a is correct since the nearest face on the lower
box is on the top side. The contact normal for point b
is incorrect since the nearest face on the lower box is
the right side. This contact point and normal combination
would erroneously prevent the boxes from sliding against
one another.

shifts momentum among objects by applying conser-
vative elastic and partially elastic impulses. To handle
collisions we use an interwoven detection and response
scheme similar to that of [15] with modifications to
handle thin shells using continuous collision detection.

In order to find pairs of interacting bodies we use
a Cartesian grid based spatial partition. To initialize
the spatial partition we rasterize the swept bounding
box of each rigid body onto the background grid. We
subsequently compile a list of interacting body pairs by
querying the background grid for the swept bounding
box of each body. As bodies are re-evolved during
collision handling and dynamic contact, we update the
background grid with their updated swept bounding
boxes. After a body has been moved, newly colliding
pairs which need processing are found by re-querying
the background grid.

Many volumetric rigid body solvers, such as [15],
use an interference detection approach. The method of
[15] used a discrete level set representation of the rigid
body for efficient depth queries. Between two potentially
colliding bodies, the points (vertices) on the surface of
one body would be queried against the level set of
the other body to determine if the two bodies were
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Fig. 4. For a vertex, where the area above the line is
the interior of the body, the admissible set of collision
and contact normals is defined by the conical combination
of the incident face normals. In this case, vectors c and
d are the face normals with the shaded area being the
admissible set. Vector a is an admissible normal, while
vector b is not.

colliding and then for the deespest point, a response
impulse would be applied and then the bodies are re-
evolved. While this approach does not prevent bodies
from passing through each other, one could thicken
the bodies by a collision threshold distance, and then
place a time step restriction which requires that each
point on every body move at most this distance in a
single time step. As a result every collision would be
detected regardless of the speed of objects, and if one
were careful when applying collision responses to ensure
that the bodies at their time n + 1 positions were sep-
arated by a minimum collision threshold distance, then
an interpenetration free algorithm could be produced.
Unfortunately, while this method can handle thin and
exactly zero thickness bodies, the method can become
impractical by requiring very small time steps for fast
moving bodies, or by overly thickening level sets (see
Figure 2 for a simple example when an extremely small
time step is required to catch a high speed collision).

Another major issue when using the type of interfer-
ence detection in [15] is that it is difficult to produce
accurate collision/contact normals. For example, when a
penetrating point is near two or more faces, the normal
could be taken from any of the faces and may not
be representative of the desired contact behavior (see
Figure 3). One solution to this issue is to remove contact
points with normals that are not in the admissible region
as defined by the conical combination of the normals
of the faces meeting at the feature (e.g. a single vector
for a plane, a wedge for an edge and generally an n-
sided pyramid for a vertex). Figure 4 demonstrates this
characterization. Note that in tests we also encountered
this issue when using a discretized level set despite
the fact that it creates a smoothed representation of
the original geometry. We also note that this issue is
often avoided in [15] due to increased point sampling,
epsilon scaling and only applying impulses to the deep-
est sample point in their iterative scheme. However, if
one wished to construct a set of contact points without
iterating in order to construct a monolithic system, such
as a linear complementarity problem (LCP) or nonlinear
complementarity problem (NCP), in order to improve
the convergence and stability of the simulation, these
normals can produce highly inaccurate results. Instead,
we use continuous collision detection to find collisions
between thin shells as detailed below. We can also elim-
inate the time step restriction on volumetric bodies by
treating them as thin shells.

3.1 Continuous Collision Detection

We base our approach on the linearly swept ver-
tex/triangle and edge/edge (generally referred to as
feature pairs in our exposition) method of [27]. In our
case, we linearize the problem by assuming each vertex
moves linearly at a constant velocity between the global
position of the vertex at times n and n + 1. We similarly
extend this to edges and triangles by linearizing the
motion of their corner vertices. This implies that each
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vertex on the edge and/or triangle also moves along
a constant velocity linear trajectory (See Figure 5). Us-
ing this linearization we find the times of coplanarity
between the feature pairs in the current time step. For
each time of coplanarity, we check whether the simplices
are actually coincident (using a small non-zero tolerance
on the order of 10−4 for robustness) and thus actually
collide at that time, in order to find the earliest colliding
time for the pair.

In order to efficiently find candidate feature pairs
between a pair of bodies, we intersect the local bounding
sphere hierarchies of each body using swept bounding
sphere intersection checks. We then find the the earliest
collision time among all candidate feature pairs.

If a collision has not occurred between the swept
geometry, we next check whether the time n+1 geometry
of the pair is in close proximity using the scheme from
Section 4.3.1. If the pair is found to be within the contact
rest distance and with an approaching point velocity
at one of the contact points, we treat the body pair as
colliding and process the nearest pair of features as the
collision feature pair.

Another approach to continuous collision detection
for rigid bodies is given by [21]. They approximate
the motion of the geometry during the time step as a
constant screwing motion by fixing the angular velocity.
While this scheme could be used instead of our col-
lision detection algorithm, we chose to apply a cloth
based continuous collision detection algorithm for its
simplicity, robustness, efficiency and to exploit existing
cloth CCD frameworks. While there are also a number
of other collision detection (see e.g. [36]–[38]) methods
which could be used for thin shells, they generally suffer
from issues of robustness, time step restrictions and com-
putational cost. We note that by linearizing the motion
of the rigid body geometry, the geometry can distort and
even become completely co-linear during the time step,
which could result in missed collisions. One solution to
this problem could be to subdivide the time step and
perform our linearized continuous collision detection
over each interval to find the earliest time of impact
over the original time step. Note that this would not
change the simulation time step, but simply improve the

xn

xn+1

a

Fig. 5. An edge rotates in 2D, colliding with a particle,
a according to the rigid trajectories (dotted lines), and
missing it according to the linearized trajectories (dashed
lines).

xn

xn+1

Fig. 6. If the second collision were handled first, the
particle would appear to ricochet off the box to the left
rather than colliding with the top of the box and ricocheting
upwards.

approximation of collision detection. However, during
our tests we never encountered any problems due to
this linearization. Even in cases when issues might arise
due to this limitation, the method still provides a “bullet-
proof” collision handling scheme which prevents objects
from interpenetrating along linear trajectories.

3.2 Collision Resolution

Similar to [15], our collision resolution algorithm is
integrated with our collision detection algorithm by
iteratively handling collisions immediately after they
are found. Our algorithm proceeds by iterating over
pairs of potentially colliding bodies. For each pair, we
attempt to resolve all collisions between the two bodies
by iteratively finding the earliest collision, computing
and applying a response impulse and then re-evolving
the bodies, stopping after a fixed number of iterations. To
compute the response impulse we use the same method
as described in [15] with slight modifications to use the
information from the linearized collision. In addition, we
clamp the resulting impulse to prevent energy increases
using the method described in [13]. For an outline of our
collision handling scheme see Algorithm 1.

Noteably, it is important to use the normal and posi-
tion from the linearized geometry at the collision time,
as well as the linear velocities of the vertices of the
involved simplices. It is necessary to use these so-called
effective velocities to find the relative pointwise velocity
in order to ensure that the relative collision velocity is
approaching (not separating) so that a valid response
impulse is computed. We found that in certain cases, due
to the linearization, the exact pointwise rigid velocities
could be tangential, even separating, when a collision
was occuring between the geometry. To prevent spurious
rotations when objects are moving quickly, we use the
moment arms from the time of impact.

Recall in Section 3.1 the case where the swept geome-
try does not collide but rather it is in close proximity
at the end of the time step. In this case, we use the
normal and location as computed in Section 4.3.1, and
the relative pointwise velocity directly computed from
both the rigid velocities and the moment arms at the
end of the step.

While we do not globally handle the earliest collision
first, we do handle all the collisions between a given pair
of bodies in consecutive order in order to prevent several
common cases which can occur with an arbitrarily small
time step. In these cases, the collision ordering has a
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xn+1
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Fig. 7. (Left) A ball is in collision with the ground before
any response impulse is applied. (Right) After applying an
elastic collision impulse and re-evolving the ball, it is even
further off the ground. (Right) After applying an inelastic
contact impulse and re-evoling the ball, it is exactly at the
rest distance.

significant effect on the solution. For example, see Figure
6.

Note that our collision handling scheme can prevent
bodies from ever touching due to the application of the
response impulse to the velocities and subsequent re-
evolution from the time n positions (e.g. see Figure 7).
This error largely depends upon the phase of the colli-
sion within the time step, and vanishes as the time step
size goes to 0. One way to reduce the visibility of such
temporal aliasing in final simulation and rendering is to
use motion blur - although this requires some storage of
the intermediate state at the time of collision.

For completeness we now give the equations to com-
pute the frictional response impulse as given in [15].
The new velocities for object i are v′

i = vi + l/mi

and ω′
i = ωi + M−1

a,i (r∗
i l) where r∗

i is the cross product
matrix of the moment arm, and l is the collision response
impulse. The update equations are the same for the
second body j with the impulse terms negated. The
change in pointwise velocity for object i can be found
by multiplying the impulse by Ki = I/mi + r∗T

i M−1
a,ir

∗
i .

Similarly multiplying the impulse by K = Ki +Kj gives
the change in relative pointwise velocity. Let vrel be the
relative pointwise collision velocity and vrel,n = nnT vrel

be the relative normal pointwise velocity where n is the
collision normal. Then we let vrel,t = vrel−vrel,n be the
relative tangential pointwise velocity. We now solve for
a set of impulses which give the new relative normal
velocity v′

rel,n = −ǫvrel,n where ǫ is the coefficient of
restitution.

We handle friction as follows. Assuming static friction,
set the new tangential relative velocity to zero, v′

rel,t = 0,
and the impulse we apply at the point is then found by
substituting v′

rel = vrel +Kl (the relative velocity update
equation) into the combined equations for v′

rel,n and

v′
rel,t. If ‖l − (lT n)n‖ ≤ µlT n, where µ is the coefficient

of friction, then the frictional impulse is correct and the
object is sticking. Otherwise we define the tangential
direction as t = vrel,t/‖vrel,t‖ and set l = nλn − µtλn

where λn is the normal impulse. We substitute this

equation into the relative velocity update equation which
is then substituted into the equation for v′

rel,n and solved
to give the final collision impulse.

Algorithm 1 Collision Handling

for i = 1→ maxIterations do
for all b ∈ allBodies do

candidates← all bodies potentially colliding with
or in proximity to body b
for all c ∈ candidates do

update bodies b and c to resolve elastic or par-
tially collisions and proximities between bodies
b and c using the impulse computation from
§3.2

end for
end for

end for

4 CONTACT

Once high speed collisions between bodies have been
handled and explicit forces have been integrated into the
velocities, we need to generate contact forces to prevent
objects in rest from interpenetrating one another. In our
time integration scheme we perform both dynamic and
static contact. In dynamic contact, we attempt to find
contact forces which resolve all interpenetrations that
occur during the time step by considering the motion
of the bodies from their time n to time n + 1 positions.
This is done by sequentially finding contacts between
each pair of bodies and attempting to resolve all of them
by updating both the positions and velocities (only tem-
porarily as they are thrown out before the real velocity is
updated) before moving onto the next pair of bodies. In
static contact, we only consider the bodies at their time
n + 1 positions and compute forces to alter their time
n + 1 velocities during the contact resolution step.

4.1 Dynamic Contact

To detect and handle contacts between moving objects,
we modify the collision detection and handling algo-
rithm from Section 3 to apply relaxed inelastic contact
impulses which allow the bodies to come into exact non-
interpenetrating contact.

As in [15] we handle each contact by computing a
response impulse, applying it to the bodies in contact

xn

x̂n+1

xn

xn+1

drest

Fig. 8. (Left) A ball is interpenetrating with the ground
before any response impulse is applied. (Right) After
applying an inelastic contact impulse and re-evoling the
ball, it is exactly at the rest distance.
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and then re-evolving their positions. In contrast to [15],
which requires the normal relative velocity to be 0, we
allow the bodies to come exactly into resting contact
at the end of the time step by modifying the impulse
computation procedure from Section 3.2 to solve for the
new normal relative velocity v′

rel,n = (drest − dcurrent)/∆t
where drest is the rest distance and dcurrent is the contact
distance at the beginning of the time step. This modifica-
tion allows bodies to more stably reach contact without
stopping prematurely and re-accelerating when contacts
are missed in subsequent steps as illustrated in Figure 8.
When processing a pair of bodies, if after a fixed number
of iterations the contacts can not be resolved, we rigidify
the pair using the approach from Section 4.2.1. The
remainder of the dynamic contact handling algorithm
proceeds iteratively in the same manner as the collision
handling algorithm and is outlined in Algorithm 2.

Algorithm 2 Dynamic Contact Handling

for i = 1→ maxIterations do
for all b ∈ allBodies do

candidates ← all bodies (or clusters) potentially
colliding with or in proximity to body b
for all c ∈ candidates do

iteratively update bodies (or clusters) b and c
using the impulse computation method from
§3.2 and §4.1, updating any child bodies using
the appropriate set of Equations 9-10 §3.2 and
§4.1
if unable to resolve all contacts then

use §4.2.1 to fully rigifidy the motion of bod-
ies b and c

end if
end for

end for
end for

4.2 Failsafe

While dynamic contact usually resolves any interpene-
trations during the time step, it can take a very large
number of iterations to converge, if at all. To avoid
this, we impose an iteration limit to prevent infinite
loops from occurring. If there are outstanding interpen-
etrations once this limit is reached, we need to resolve

Fig. 9. A stack of blocks is hit by a sphere moving
from the right. Both images are after 13 time steps.
(Left) Using only rigidification in the failsafe causes the
stack and the ball to have zero velocity. (Right) Using our
kinematic rigidification allows the boxes to separate while
guaranteeing an interpenetration free state.

them using a more robust scheme that guarantees a
non-interpenetrating state in a reasonable amount of
time. In cloth simulation, failsafes, such as in [26], [27],
[30], have long been used to guarantee there are no
interpenetrations during and at the end of the time step.
In the failsafe used in [27], when two pieces of cloth
are interpenetrating after the main collision processing
step, they are combined into a single cluster (referred
to as impact zone in previous work) and rigidly evolved
over the time step. While this is certainly non-physical, it
does preserve momentum and guarantees that the cloth
geometry has followed a nonpenetrating trajectory. This
process of merging cloth elements continues until either
all the cloth elements have been merged into a single
cluster, or when no interpenetrations remain. We note
that this process is guaranteed to terminate in a fixed
number of iterations since at least one pair is merged
per failsafe iteration and the maximum number of pairs
which can be merged over the entire procedure is at most
the number of bodies minus one. This holds true for our
failsafe as well.

While for cloth, complete rigidification often suffices
because of the local effect of applying contact impulses;
for rigid bodies, the instant propagation of impulses
can cause large numbers of bodies to be rigidified. We
propose a modification to this scheme which mitigates
the visual artifacts of being completely rigidified. We
do this by preserving relative motion between bodies
that have been clustered together. See Figure 9 for a
comparison between a fully rigidifying failsafe and ours.

Our failsafe proceeds in the same manner as our
dynamic contact algorithm. For each body in sequence
we compute all potentially colliding pairs of bodies and
then sequentially process each pair of bodies attempting
to resolve all interpenetrations between a single pair of
bodies. After processing a pair of bodies, if all inter-
penetrations are resolved then the pair is kinematically
rigidified into a single cluster as described in Section
4.2.2. If there are interpenetrations remaining between a
pair of bodies then the pair is fully rigidified as described
in Section 4.2.1. We note that when iterating through pair
of bodies we discard any pairs which have already been
clustered, and also that when processing pairs where one
or both bodies are clusters we require that all intercluster
interpenetrations are resolved in order to kinematically
rigidifying the pair. See Algorithm 3 for an outline of
our failsafe procedure.

One problem that arises when applying kinematically
rigidification is that bodies can pinched by kinematic
clusters such that not all interpenetrations can be re-
solved. As a result, the pair will be fully rigidified in
their time n interpenetration free states and subsequently
rigidly evolved. Hence, the work done to preserve any
relative motion within the kinematic cluster will be
undone. In tests we found this case occurs in regions of
high speed impact and in the interior regions of stacks
where bodies were not visible. Exterior bodies tended
to be remain uncluster or be kinematically rigidified
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in later iterations, hiding the full rigidification on the
interior. We note that this is highly sensitive to the order
in which pairs are processed and is an avenue for future
investigation.

4.2.1 Rigidification

When the interpenetrations between a group of bodies
cannot be resolved within the iteration limit, they must
be rigidified to prevent interpenetration. To do this, the
bodies are clustered together at the beginning of the
time step and rigidly evolved together. We now give the
procedure for rigidifying a cluster of rigid bodies.

We first compute the combined properties of the clus-
tered bodies as follows:

mc =
∑

i∈C

mi (5)

xn
c = 1/mc

∑

i∈C

mixn
i (6)

Ma,c =
∑

i∈C

(Ma,i + mi(xn
i − xn

c )∗(xn
i − xn

c )∗T ) (7)

where C is the set of child bodies within the cluster.
Equation 5 defines the cluster’s mass, mc, where mi

is child body i’s mass. Equation 6 defines the time n
position of the cluster, xc, as the center of mass for the
bodies where xi is child body i’s position. Equation 7
defines the cluster’s rotational inertia, Ma,c, where Ma,i

is child body i’s rotational inertia.

Algorithm 3 Failsafe

needAnotherIteration← true
while needAnotherIteration do

needAnotherIteration← false
for all b ∈ allBodies do

candidates ← all bodies (or clusters) potentially
colliding with or in proximity to body b
for all c ∈ candidates do

iteratively update bodies (or clusters) b and c
using the impulse computation method from
§3.2 and §4.1, updating any child bodies using
the appropriate set of Equations 9-10 or 13-14
if any contacts found between bodies b and c
then

needAnotherIteration← true
if able to resolve all contacts then

use Equations 5-7,11 and 12 to compute the
kinematic cluster properties for the aggre-
gate of the bodies (or clusters) b and c

else
use Equations 5-10 to compute the cluster
properties and fully rigifidy the bodies (or
clusters) b and c

end if
end if

end for
end for

end while

Next we compute the cluster’s new velocity as follows:

Vc = M−1
c

∑

i∈C

(
miI 0

mi(xn
i − xn

c )∗ Ma,i

)
Vi (8)

where Vi is child body i’s generalized velocity and Mc

is the cluster’s generalized inertia. Equation 8 finds the
new generalized velocity of the cluster by computing
the combined momentum of each child body about the
cluster’s center of mass and then multiplying it by the
inverse of the cluster’s generalized inertia.

We use this new generalized velocity to integrate the
generalized cluster position Xn (a transformation matrix
where the initial time n orientation is the identity matrix)
to a new generalized position, Xnew, using the rigid
body integration scheme defined earlier in Equations 3
and 4. Finally we update the positions and velocities of
the child bodies as follows:

Xnew
i = Xnew

c (Xn
c )−1Xn

i (9)

Vnew
i =

(
I −(xn

i − xn
c )∗

0 I

)
Vc (10)

where Xn
i is the time n generalized position for child

body i. Equation 9 computes the new position of each
child body by finding the relative position of the body
within the cluster at time n, and then multiplying this
relative position by the new position of the cluster.
Equation 10 computes the new linear velocity of each
child body as the pointwise velocity of the cluster while
assigning the same angular velocity of the cluster to the
child body.

When the cluster subsequently collides with other
bodies, child body positions and velocities are updated
again using Equations 9 and 10.

4.2.2 Kinematic Rigidification

Before giving the details, we start with a simple motivat-
ing example. Suppose one has three bodies and can re-
solve the interpenetrations between two of these bodies.
However, as a result of resolving these interpenetrations,
the third body now impacts with the first two bodies
causing them to again collide in subsequent iterations.
Removing the interpenetrations between the first two
bodies can again cause interpenetration with the third
body and so on and so forth. Instead, after handling all
the interpenetrations between the first two bodies, we
cluster them together such that their relative velocities
and positions at both the beginning and end of the step
are preserved. We then collide the cluster with the third
body. As a result, all the bodies will be interpenetration
free and the first two bodies will still move relative to
one another unlike the fully rigidifying case.

First note that we cannot form a kinematic cluster
between two bodies unless we can remove all inter-
ference between them through contact detection and
response iterations. Once we have non-interpenetrating
trajectories for the bodies we write the new time n + 1
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Fig. 10. Several hanging thin shell ring chains are hit by two balls rolling along the ground. This demonstrates the
ability of our method to handle large quantities of thin shell objects.

position of the cluster as follows:

xc = 1/mc

∑

i∈C

mixi (11)

where xi is the current time n + 1 position of child body
i. Equation 11 is the position of the center of mass of the
cluster at the end of the time step if all the child bodies
were allowed to freely evolve. The orientation for the
generalized position is the identity matrix.

We also compute an effective velocity for the cluster:

vc =
xc − xn

c

∆t
(12)

where xn
c is defined in Equation 6. We also form a

generalized velocity for the cluster, Vc, noting that the
angular velocity is zero in contrast to Equation 8 because
the initial rotation of child bodies over the timestep is
handled through the kinematic relative motion of the
child bodies themselves.

Once a contact impulse has been computed and ap-
plied to the effective cluster velocity, Vc, to get a new
cluster velocity, Vnew

c , we re-integrate the old cluster
position, Xn

c , using the rigid body integration scheme
defined in Equations 3 and 4, to arrive at a new cluster
time n + 1 position Xnew

c . We then update the positions
and velocities of the child bodies as shown below:

Xnew
i = Xnew

c X−1
c Xi (13)

Vnew
i = Vi +

(
I −(xn

i − xn
c )∗

0 I

)
(Vnew

c −Vc) (14)

Equation 13 updates the position of each child body to
reflect the change in the time n+1 position of the cluster
due to the impulse. Equation 14 updates the velocity of
each child body by propagating the difference in velocity
from the cluster. Note that the relative positions and
velocities of the child bodies are preserved.

When comparing Equations 13 and 14 to Equations
9 and 10, note that instead of (Xn

c )−1Xn
i we have have

X−1
c Xi where both Xc and Xi are time n + 1 quantities.

The latter expression could be substituted into Equation
9 to replace the prior expression, obtaining the same
answer as long as one is careful to use the post clustering
velocities of the individual objects in computing the
time n + 1 state. However, this adds extra complexity
to Equation 9 which is not needed. Similar statements
hold for equations 10 and 14. The point is that the
equations for kinematic clusters are more general, but
do properly reduce to those for normal rigid clusters
under appropriate assumptions.

4.3 Static Contact

Typically algorithms such as in [15] use level set depth
testing to determine contacts between pairs of bodies.
However, as mentioned above, this method does not
work for thin shell processing without thickening the
geometry. Instead, we present a feature pair proximity
contact detection algorithm which allows for more accu-
rate and stable stacking.

4.3.1 Contact Detection

Since we are guaranteed an interpenetration free config-
uration after the dynamic contact and the failsafe steps of
our integration scheme, it is necessary to use proximity
detection in order to find contact points. We proceed by
finding nearest points on vertex/triangle and edge/edge
pairs which are nearer than a contact proximity, dproximity.
We generally use the direction between pairs of nearest
points as the contact normal and one of the points as
the contact location. However, these normals are not
guaranteed to be within the admissible region for both
contact locations on each body. In fact, even in simple
cases such as a box sliding on a flat surface, contacts
are likely to occur with inaccurate normals as illustrated
in Figure 11. Note that the same scenario can also occur
away from sharp corners, such as when vertices are near
edges between colinear faces. While the classification
from Section 3 could be used to eliminate contacts with
inadmissible normals, a robust implementation handling
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Fig. 12. 10000 thin shell boats, made of triangles with no interior, are dropped into a bowl demonstrating the scalability
of our method even in the presence of high velocity objects.

non-manifold geometry and vertices with concave in-
cident edges would require considering many cases.
Instead, we apply a simple heuristic to filter contacts.

When computing vertex/triangle contacts we only
consider vertex/triangle pairs where the triangle is the
nearest face to the vertex. For each of these pairs, we
project the vertex p onto the triangle to find the point
pt. We next project pt onto the vertex body (the body
containing the vertex) to find the point pt,v . We then
cull the vertex/triangle proximity if the angle between
−→ppt and −−−→pt,vpt is greater than θproximity. Otherwise we
create a contact using −→ppt/|

−→ppt| as the contact normal, p
as the contact location and |−→ppt| as the contact distance.
See Figure 11 for an illustration of this process. For
edge/edge proximities, we first find the nearest points
in proximity, p1 and p2. We next project these points
onto their respective opposing bodies giving points
p1,e2

and p2,e1
. We then cull the proximity if the angle

between either −−−−→p1p1,e2
and −−→p1p2 or −−−−→p2p2,e1

and −−→p2p1
exceeds θproximity. Otherwise we create a contact using
−−→p1p2/|−−→p1p2| as the contact normal, p1 as the contact
location, and |−−→p1p2| as the contact distance. Furthermore,
in both vertex/triangle and edge/edge cases, in order
to prevent contacts being created between feature pairs
which are occluded we cast a ray between the points and
reject the proximity if an intersection is found.
4.3.2 Contact Resolution
Once the set of contact points has been found, a set of
contact impulses resolving any approaching velocities is
computed. [15] proceeds by iterating over each contact,
computing an impulse and then immediately applying
that impulse before moving on to the next contact.
Unfortunately, this can result in excessive forces being
applied at certain contacts, causing bodies to separate
rather than stay in contact. [15] mitigated this by scaling
the impulse applied at each contact by a small epsilon
parameter. This allowed the effect of impulses to be at
least partly propagated to other contacts in further itera-
tions to prevent excessive overshooting. The immediate

consequence of this approach is that the convergence rate
can severely deteriorate, depending upon the epsilon
parameter chosen.

Instead, we use a modified Projected Gauss Seidel
approach (see [29], [39] for a reference to other Projected
Gauss Seidel implementations) to handle contact resolu-
tion. In general, Projected Gauss Seidel converges much
more quickly than the sequential impulse approach
of [15]. Projected Gauss Seidel does not need to apply
epsilon scaling to achieve stable results because it works
towards the solution of the NCP and, when converged,
does not introduce a bias in the solution dependent upon
the order in which contacts are handled. The order in
which the constraints are evaluated and impulses are
applied does not change the solution in the limit.

We base our contact model on that described in [29],
and modify it to target a non-zero relative velocity
in the normal direction allowing bodies in contact to
exactly come to rest. Similar to dynamic contact, we
compute the desired relative velocity at each contact
as (dcurrent − drest)/∆t which we use as the right hand
side in the non-penetration constraint. We now state the
modified equations from [29]. For the kth contact we
define the relative velocity as

vk,rel =
(
−Jk,i Jk,j

)
︸ ︷︷ ︸

Jk

(
Vn+1

i

Vn+1
j

)

︸ ︷︷ ︸
Vn+1

= JkVn+1 (15)

where Jk,i = (I −r∗
i ) and Jk,j = (I −r∗

j ) are Jacobians
mapping the rigid velocities of the bodies in contact
(indexed by i and j) to the pointwise velocity at contact
k. The modified non-penetration constraint is then as
follows:

nT
k vk,rel ≥

drest − dk,current

∆t
(16)

where nk is the contact normal and dk,current is the
current distance between the bodies in contact. The right
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hand side of Equation 16 allows bodies to settle into ex-
act contact at the rest distance in a single time step. This
both improves the stability of our simulation as well as
reduces the subsequent number of collision and contact
iterations. Note that it is important when implementing
this constraint that the rest distance, drest, is less than
the dproximity, so that objects in contact will be processed
in the collision step and subsequently processed in the
second static contact step to prevent jittering. Similar
formulations, such as the post-stabilization methods
of [40]–[42], also account for relative motion. However,
they do not necessarily intend to anticipate contacts
between bodies not already in contact, rather using it to
prevent objects from penetrating too deeply or jittering.
The complementarity condition for this constraint then
becomes

λk,n ≥ 0 ⊥
(

nT
k vk,rel −

drest − dk,current

∆t

)
≥ 0 (17)

where λk,n is the contact impulse in the normal direction.
The friction conditions and contact impulse definition
remain unchanged from [29] and for completeness are
included. The four sided friction pyramid is defined as

λk,s = −µλk,n ⇒ tT
k,svk,rel ≥ 0, s = 1, 2 (18)

λk,s = µλk,n ⇒ tT
k,svk,rel ≤ 0, s = 1, 2 (19)

−µλk,n < λk,s < µλk,n ⇒ tT
k,svk,rel = 0, s = 1, 2 (20)

where tk,1 and tk,2 are the tangent vectors for contact
k, λk,1 and λk,2 are the contact impulses in the tangent
directions and µ is the coefficient of friction. The impulse
due to contact k is then defined as

lk = nkλn + tk,1λk,1 + tk,2λk,2 (21)

In order to compute updated time n + 1 velocities,
we explicitly integrate the contact impulse defined in

p

pt

t2
t1

pt,v

Fig. 11. Although vertex p is in proximity to faces t1 and
t2, in order to prevent the boxes from catching when they
are in sliding contact (since the contact normal would be
in the direction of −→ppt) we do not create contacts between
the vertex and either face. To illustrate our pruning pro-
cedure, consider the proximity between vertex p and face
t1. We first project the location of vertex p onto face t1 to
find point pt. We next project point pt onto the upper box
to find point pt,v. We then prune the proximity between
vertex p and face t1 since the angle between −→ppt and
−−−→pt,vpt is greater than θproximity. The same process is used
to prune the proximity with face t2.

Fig. 13. A simulation of 1000 boats dropped into a bowl
(bowl not rendered). Note in (right) that the boats are
tightly packed within the bowl, but remain interpenetration
free.

Equation 21 by multiplying it by JT
k in order to compute

the linear and angular impulses for each body and then
using the momentum update equation

Vn+1 = V̂n + M−1lk (22)

where V̂ is the precontact generalized velocity, a is the
acceleration due to explicit forces, and M is the gener-
alized mass matrix for the bodies in contact. When as-
sembling a system for multiple contacts the momentum
update equation for each body is modified to contain the
sum of the impulse terms from each contact is involved
in.

Once the full system has been built, we solve it using
the Projected Gauss Seidel iteration as described in [29].
To check for convergence, we use the L∞ norm of the
constraint violations, stopping when it is less than a user
specified tolerance. In addition, we also use an iteration
limit and once it is reached we apply the shock prop-
agation scheme from [29]. This enables us to efficiently
handle large stacks. We would also like to note that other
iterative approaches such as the one in [40] could be used
to implement a more accurate friction cone. However, by
randomly choosing the tangent vectors, any bias in large
piles of objects due to the friction cone approximation
was imperceptible.

5 EXAMPLES

Unless otherwise noted all simulations were run with the
parameters listed in Figure 20. For timing information on
several examples see Figure 17.

Figures 2 and 15 show examples where high speed
collisions are handled by our method. In Figure 2 the

Fig. 14. A block is suspended between two cylinders
being compressed by two planes under gravity. (Left) Bias
in the solution given by the sequential impulses method
allows the block to slip. (Right) Our scheme computes the
correct frictional impulses to statically suspend the block.
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Example Number of Bodies Time per Step Collisions/Dynamic Contact Static Contact
Detection Response Detection Response

Boats Falling into Bowl

102 1.7s 1.3s 0.4ms 0.20s 0.18s
252 4.8s 3.9s 1.1ms 0.46s 0.52s
502 9.6s 8.0s 2.5ms 0.84s 0.80s
1002 20.9s 17.7s 6.0ms 1.45s 1.61s

Hanging Rings 2003 19.1s 15.7s 9.8ms 0.30s 1.93s
Triangles Falling onto Pegs 186 0.45s 0.34s 0.6ms 0.02s 0.08s

Fig. 17. Timing information per time step for the first 200 steps of several simulations. In these tests the memory usage
was less than 10mb due to geometry instancing and was greatly outweighed by the overhead of our framework.

interference testing used by [15] allows the block to
pass through the plank entirely missing the collision
while our method detects the collision and produces a
plausible response. We explore the computational cost
for the example in Figure 15 with varying time steps in
Figure 18 and note that we do see a reduced overall com-
putational cost when taking larger time steps, however
the improvement diminishes for larger time steps. One
example where [15] breaks down, even in the volumetric
case, is shown in Figure 14, where a box is pinched
between two cylinders in a funnel. Since the contact
algorithm in [15] is biased, the box eventually slips.
Instead, by applying a static contact step we accurately
find the sticking solution, allowing the box to remain
suspended by friction alone.

Figure 9 demonstrates the ability of our failsafe to
plausibly resolve collisions. In this case a stack of boxes
is hit in the middle by a ball. We limit the number
of collision and contact iterations such that the failsafe
is forced to rigidify the entire stack. Without kine-
matic rigidification, the stack is rigidified statically to
the ground and the ball freezes once it collides with
the stack. Even if the algorithm were modified to not
rigidify with the ground, the impact of the ball would
be distributed evenly about the entire stack. The stack
would then tip over as a single cluster until subsequent
steps when the remaining collisions are resolved before
the failsafe is applied. With kinematic rigidification the
impacted box is allowed to slide such that the stack
breaks up immediately.

Figure 1 shows a set of degenerate triangles (thin shells
with their geometry lying in a single plane) stacking
both flat on the ground and leaning up against the fixed
pegs. The close up views in Figure 13 demonstrate the
ability of our algorithm to tightly pack concave objects.
We extend this example to 10000 falling bodies in Figure
12.

Fig. 15. A stack of boats at rest is hit by a ball. The ball
is moving fast enough such that the collision between the
balls and the stack would be missed without continuous
collision detection at larger time steps.

In Figure 19 we give the timings for our 1000 boats
falling into a bowl example, run with varying numbers
of iterations. We found that it was necessary to take
a minimum of 50 collision/dynamic contact iterations
to avoid excessive rigidification in more complicated
examples such as in Figures 13 and 10. We found that
simulation times were overall faster when taking more
iterations due to failsafe iterations being more expen-
sive in our implementation, particularly in stacks where
where rigidifying bodies resulted in large numbers of
new collisions. Furthermore, since we discard the veloc-
ities from dynamic contact and the failsafe, collisions not
resolved during processing in one time step were neces-
sarily handled in subsequent time steps still requiring
the same work. While we applied shock propagation
and achieved excellent results for free standing stacks,
for cases where there is no single shock direction such
as in Figures 13 and 10 it was necessary to take several
hundred iterations to allow objects to settle stably. We
found that it was very important to accurately solve the
system in the static contact step to achieve reasonable
scaling by only relying upon dynamic contact to handle
collisions and contacts due to nonlinear motion or high
speeds. This also further improved performance since
static contact iterations are much less expensive than
our collision or dynamic contact iterations. Figure 16
shows the computation time and number of collisions
and contacts per time step plotted against time. Note
that the majority of the computational expense occurs
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Fig. 16. The computation time and number of colli-
sions/contacts per frame plotted against simulation time
for the first 10 seconds of the example with 1000 boats
dropped into a bowl.
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Time Step Size Time per Step
1/96s 43.7ms
1/48s 73.6ms
1/24s 48.0ms
1/12s 114.7ms
1/6s 215.2ms

Fig. 18. A comparison of the computation times for the
example shown in Figure 15 when run with different time
steps.

during the initial impact and stacking of the boats in
the bowl and that once they come to rest the number of
contacts stabilize and the cost decreases.

6 CONCLUSIONS
We have addressed several unresolved problems within
rigid body simulation to enable the interpenetration
free simulation of rigid bodies with polygon soup type
geometric representations at framerate time steps. We
accomplished this by integrating a linearized continuous
collision detection method into an iterative collision
response algorithm and coupling it with a more accurate
failsafe. Specifically, this has allowed the unthickened
simulation of completely thin shells, even degenerately
thin bodies where all of the geometry lies within a
single plane. In addition to enabling interpenetration free
simulation, we have proposed a proximity based contact
detection and iterative contact response algorithm. This
contact algorithm both avoids the inside/outside prob-
lem for finding contacts between thin shell bodies as well
as improves the performance of our overall method by
handling the majority of contacts and collisions without
expensive continuous collision detection. One caveat
with our failsafe is that, as with most interpenetration
free methods, when multiple infinite mass bodies are
moving with different velocities, finding a solution, even
if one exists, is a problem. For example, consider the
scenario when a body is being pushed or pulled along
the ground by a second infinite mass object. Note that
although our contact algorithm scales well due to the use
of a contact graph in shock propagation, parallelization
to a large number of processors and GPUs is complex
and an avenue for future research.
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