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Figure 1: Two ships in stormy seas near Longfellow island. We refine the domain near the ships by placing grids in their object spaces to
add detail and allow them to propel themselves using their two-way solid-fluid coupled propellers.

Abstract
We introduce a new method for large scale water simulation using
Chimera grid embedding, which discretizes space with overlapping
Cartesian grids that translate and rotate in order to decompose the
domain into different regions of interest with varying spatial res-
olutions. Grids can track both fluid features and solid objects, al-
lowing for dynamic spatial adaptivity without remeshing or repar-
titioning the domain. We solve the inviscid incompressible Navier-
Stokes equations with an arbitrary-Lagrangian-Eulerian style semi-
Lagrangian advection scheme and a monolithic SPD Poisson solver.
We modify the particle level set method in order to adapt it to
Chimera grids including particle treatment across grid boundaries
with disparate cell sizes, and strategies to deal with locality in the
implementation of the level set and fast marching algorithms. We
use a local Voronoi mesh construction to solve for pressure and ad-
dress a number of issues that arise with the treatment of the velocity
near the interface. The resulting method is highly scalable on dis-
tributed parallel architectures with minimal communication costs.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;

Keywords: chimera grids, adaptivity, water simulation

1 Introduction
Over the last decade the simulation of fluids has become an im-
portant part of computer animation due to the broad range of ef-
fects it can produce. Many of these advances have been due to
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increasing computational power as well as more efficient and accu-
rate algorithms. However, the recent trend towards multiprocessor
and multicore architectures, rather than increased sequential speed,
has made numerical advances more difficult. While parallelism has
been exploited, it has often been though the brute force paralleliza-
tion of sequential algorithms resulting in simulations that lack the
ability to reach larger scales.

In order to write efficient parallel software one has to carefully con-
sider both how data is represented as well as the way algorithms
access and use data — primarily due to the high cost of commu-
nication in parallel environments. Even with multiprocessor and
multicore environments, data layout is critical in order to maximize
cache coherency. Unstructured methods such as those using meshes
made up of tetrahedra (see e.g. [Feldman et al. 2005; Klingner
et al. 2006]) and particle based methods such as Smoothed-Particle
Hydrodynamics (see e.g. [Desbrun and Cani 1996; Müller et al.
2003; Premoze et al. 2003]) in particular tend to have poor cache
coherency due to their non-sequential data layout in memory. Un-
structured methods have significant issues with domain decom-
position due to the expensive and complicated partitioning algo-
rithms necessary to evenly distribute the workload across process-
ing nodes. Moreover, these methods typically require frequent
“remeshing” forcing continuous re-partitioning and the movement
of large amounts of data between processors.

In contrast, structured methods offer a lightweight implicit struc-
ture, cache coherent data layout, accurate numerical stencils, and
straightforward domain decomposition. However, simply using a
single uniform Cartesian grid is not often feasible since many sim-
ulations require the resolution of details on many different scales.
Spatial adaptivity has played a critical role in allowing large scale
and accurate simulations by permitting refinement in areas of inter-
est such as at interfaces and near the camera. A number of struc-
tured adaptive methods have been developed within the graphics
communities such as lattice based tetrahedral methods (see e.g.
[Chentanez et al. 2007; Batty et al. 2010] – and [Molino et al.
2003; Labelle and Shewchuk 2007]) and octree methods (see e.g.
[Losasso et al. 2004; Losasso et al. 2006]). Unfortunately these



Figure 2: Pouring water drives a water wheel via two-way solid-fluid coupling. The domain around the water wheel buckets is resolved by
eight grids that rotate with the wheel in order to resolve the thin bucket walls. In addition, a single larger grid encases the entire wheel and
also rotates in the same rigid body frame as the wheel.

methods typically require complicated pointer and tree structures
in order to efficiently store and access data limiting their ability
to scale. Adaptive Mesh Refinement (AMR) methods (see e.g.
[Berger and Oliger 1984; Berger and Colella 1989; Sussman et al.
1999]) exploit a block Cartesian grid structure by constructing an
adaptive hierarchy of Cartesian grid patches. AMR uses axis-
aligned grid placement in order to simplify implementation and nu-
merical algorithms, however this requires a large number of small
patches in order to efficiently resolve non-axis-aligned features.
This abundance of small patches creates problems with domain de-
composition and cache coherency similar to those for unstructured
grids.

Because of the aforementioned issues with both unstructured meth-
ods and structured adaptive methods, we are motivated to pursue
the use of Chimera grids (see e.g. [Benek et al. 1983; Henshaw
1994; Kiris et al. 1997]). Chimera grids are essentially a superset
of AMR where grids can be arbitrarily oriented to better resolve
non-axis-aligned features with a smaller number of grids. Axis-
aligned AMR patches can be seen as a piecewise-constant approx-
imation while rotated Chimera grids are a piecewise-linear approx-
imation. Abstractly speaking, a Chimera style approach is not en-
tirely new to the graphics community (see e.g. [Rasmussen et al.
2004; Shah et al. 2004; Patel et al. 2005; Dobashi et al. 2008; Tan
et al. 2008; Cohen et al. 2010; Golas et al. 2012]), however each
previous approach has been limited in either generality or scalabil-
ity when compared to a full-blown Chimera grid scheme.

In this paper we extend the Chimera grid method of [English et al.
2012] to support water simulation by making a number of novel
contributions to allow fluid to move from one grid to another while
minimizing artifacts. In Section 3 we extend the particle level set
method to overlapping grids. We address a number of issues related
to reinitialization of the signed distance function after advection,
enforcement of the free surface’s continuity among the different the
Cartesian grids and the Voronoi mesh, as well as extrapolation on
the Voronoi mesh in order to provide valid signed distance values
to the pressure solver. Particle handling at grid boundaries is also
addressed. In Section 5 we discuss extending the Voronoi diagram
pressure solver of [English et al. 2012] to free surfaces by using a
second order accurate cut-cell free surface pressure condition, intro-
duce an improved mapping of the velocities between the Cartesian
grids and composite Voronoi mesh near the free surface, and extrap-

olating velocities across the free surface both on the Voronoi mesh
and Cartesian grids. We extend the method to support monolithic
two-way solid-fluid coupling which we demonstrate on a number of
large scale problems in Section 6. Finally, we present a method for
seamlesly rendering the free surface as the composite of the level
sets on each grid in Section 8.

2 Chimera Grids

Chimera grid embedding uses a number of overlapping grids which
are arbitrarily positioned, oriented and even of multiple types in
order to decompose the domain into regions of interest. In many
cases curvilinear grids which conform to an object’s surface are
used to model the boundary layer with great detail, while a regular
Cartesian grid is used to capture the flow further away. This has
allowed Chimera grid methods to be extremely effective in practical
engineering applications. In fact, they were originally designed to
simulate the compressible transonic flow regimes around the space
shuttle using the Overflow solver [Benek et al. 1983].

Our Chimera grid approach builds upon the work of [English et al.
2012] discretizing space using a number of overlapping regular
Cartesian grids with equal cell edge lengths undergoing rigid mo-
tion as illustrated in Figure 8. We emphasize that each Chimera grid
can be thought of as a rigid body with a regular Cartesian grid stored
in object space. In fact, our implementation uses a rigid body parti-
cle system to track each grid, while also allowing grids to be simply
attached to existing rigid bodies. We define the transformation from
a grid’s object space to world space as ~xworld = R~xobject + ~s where
~xworld is the world space location, ~xobject is the object space location,
R is the rotation, and ~s is the translation. Similarly, we transform
vectors from object space to world space using ~vworld = R~vobject.

Chimera grids are extremely flexible and provide a convenient way
to track flow features such as vortices and thin splashes as well
as solid objects. We generally use a large background grid as can
be seen in the bottom right of Figure 3. This gives a large sim-
ulation domain allowing waves to travel a long distance without
hitting or reflecting off of the domain boundaries. In addition, we
place smaller and finer grids near interesting features such as the
drops and splashes in Figures 3 and 4. Note that in Figure 4 the
grids follow the armadillo drops to track and preserve their shape



Figure 3: A single water drop impacts a flat water surface generat-
ing several circular waves. The large domain allows these waves to
propagate a long distance without reaching the domain boundaries.
Note that the waves pass from one grid to the next without visible
artifacts. The bottom right figure is the same as the bottom left ex-
cept that we zoom the camera back even further in order to show the
computational domain and the three grids used in the simulation.

and detail. Chimera grids are also used to follow and track rigid
objects as can be seen in Figure 7. The efficacy of our approach is
further illustrated in Figures 2, 9, and 10, which show the resolution
of thin features such as the buckets of a water wheel, the wings and
tail of a glider, and the propellers on a ship.

Note that compared to certain unstructured and structured adaptive
methods, we perform some duplicate computation in regions over-
lapped by more than one grid. However, assuming a reasonable
grading and placement of grids, for most operations the overall cost
of changing the method to avoid computing the solution in over-
lapped cells would exceed that of simply computing the solution
throughout the entire domain. This is exacerbated by the domain
decomposition used for parallelization. Furthermore, by operating
on the entire grid we can exploit the single grid implementations of
certain operations without modification, significantly reducing the
implementation effort. The efficiency of our approach is empha-
sized by the large scale computation in Figures 1 and 11.

3 Level Set Method

Before directly addressing our full time evolution scheme we ad-
dress representing and time evolving a free surface on overlapping
grids and assume for now that the velocity field is given. To accom-
plish this, we follow the particle level set approach of [Enright et al.
2002a]. On each grid we store the level set φ values at cell centers
as in the single grid case. At the beginning of each time step we fill
the φ values in a number of layers of ghost cells along the exterior
of each grid. For each ghost cell we interpolate a value using the
finest overlapping grid with a valid interpolation stencil for that cell
center. Since we are using a MAC grid discretization, this requires
that the interpolation location lies within a grid’s domain shrunken
by half a grid cell.

Once we have filled the ghost cells, we advect the level set scalar
field using the semi-Lagrangian approach of [Stam 1999; Enright
et al. 2005] modified to support grid motion. In order to compute
an updated φ value at an object space grid location ~x, we trace a ray
backwards in time from ~x using the time tn velocity at ~x. For sim-

Figure 4: Many water droplets in the shape of armadillos are
dropped into still water. Each armadillo is enclosed by two moving
grids: one tightly wrapped to resolve the armadillo as it falls and
one slightly larger to catch the resulting splash. Our Chimera grid
strategy allows detailed resolution of the small armadillo droplets
even in this large domain.

plicity, we first consider the case where a grid is stationary and give
updated φ value at this location as φn+1(~x) = φn(~x −∆t~un(~x))
where ∆t is the time step and ~un is the time tn object space ve-
locity. Note that the entire operation is performed in the object
space of the grid, and the update equation is identical to that of
standard semi-Lagrangian advection. We next consider the case
of a moving grid. To update a specific grid point in object space,
~xobject, we first compute where that point will be in world space
at time tn+1, ~xn+1

world = Rn+1~xobject + ~sn+1, and then we put this
world space point back into object space at time tn in order to in-
terpolate the velocity as ~ufluid = ~un((Rn)−1(~xn+1

world − ~s
n)). This

velocity then needs to be augmented by the grid motion obtain-
ing an effective velocity of ~ueffective(~xobject) = ~ufluid − ~ugrid where
~ugrid = (Rn)−1(~xn+1

world − ~x
n
world)/∆t and ~xnworld = Rn~xobject + ~sn.

We then compute the final value at ~xobject as follows:

φn+1(~xobject) = φn(~xobject −∆t~ueffective) (1)

A loose time step restriction is necessary in order to guarantee that
(Rn)−1(~xn+1

world − ~s
n) is in the interior of the grid and its accompa-

nying ghost cell layers so that we can interpolate ~un. As described
in [English et al. 2012] we use several layers of ghost cells to allow
for grid motion in addition to layers used for advection. Note that
like generalized semi-Lagrangian methods Equation 1 follows the
same world space path as standard semi-Lagrangian advection.

After advection, we again fill the ghost cells before reinitializing
the interface independently on each grid using the fast marching
method and higher order interface initialization as described in
[Losasso et al. 2006]. Note that we fill enough ghost cell layers
to cover the bandwidth used by the fast marching method. This al-
lows us to march over both the interior and ghost cells in a single
process and achieve the correct result on the interior of the domain.
When using the fast marching method, which marches only in a
limited band near the interface, the stopping distance on the fine
grid can be too small to guarantee a valid interpolation stencil for
filling overlapped cells. However, this only occurs when the grad-
ing between grids is large and can be avoided by increasing the
stopping distance on the fine grid. In order to prevent the level set
representations from drifting apart in overlapped regions on differ-



Figure 5: A free surface is shown overlaying our Voronoi pressure
discretization. When reintializing the level set after advection, val-
ues are computed for only a limited band of cells around the inter-
face. The limits of these bands are drawn as dashed lines (with the
color indicating the corresponding grid). Due to the unstructured
connectivity between grids on the Vonoroi mesh, cells on coarse
grids along the interface may be adjacent to cells on the fine grid
outside of the reinitialization bandwidth as illustrated by the two
cells with black dots at their cell centers. In order to use a second
order accurate free surface boundary condition we compute an up-
dated φ value for the cell on the fine grid by linearly extrapolating
from the cell on the coarse grid.

ent grids, we inject the φ values in cells which are overlapped by
a finer grid. When filling ghost cells we interpolate from the finest
grid with a valid interpolation stencil. After injecting to these cells
we need to perform a second reinitialization step in order to guar-
antee valid values through to the stopping distance. This time, after
filling the φ values in ghost cells, we reinitialize the level set values
in the overlapped cells only in order to minimize dissipation.

We briefly look forward to the pressure solver described in Section
5. In order to apply a second order accurate free surface boundary
condition in the solver, a valid level set value is required at each cell
along the free surface. Due to the limited bandwidth used in the fast
marching method and the unstructured connectivity between grids
on the Voronoi mesh used in the pressure solve (as depicted in Fig-
ure 8), certain coarse grid cells may neighbor fine grid cells which
do not have valid φ values as illustrated in Figure 5. For each of
these cells, we extrapolate a φ value from a neighboring cell on the
Voronoi mesh by computing∇φ at this neighboring cell using val-
ues from this cell’s intrinsic Cartesian grid. The neighboring cell
must both have a valid value of φ and a valid value of ∇φ, and if
more than one neighbor has valid information we use the neighbor
with the smallest value of |φ|/∆x representing the value closest
to the interface with the most accurate information. After comput-
ing these updated φ values, we interpolate values for any Cartesian
cell centers that were removed during the Voronoi mesh construc-
tion as well as a one cell thick layer of ghost cells. These cells
are filled using barycentric interpolation on the Delaunay triangle
mesh dual of the Voronoi diagram. Without this interpolation step
to enforce consistency between the Voronoi mesh and the Cartesian
grid level set representations, water could become stuck along grid
boundaries on the coarse grid since the fluid in these cells does not
directly influence the pressure solution. We perform a final reini-
tialization step in these interpolated cells in order to guarantee that
they are valid through to the stopping distance.

Figure 6: A kinematically driven grid moves in and out of still wa-
ter without disturbing the surface. Throughout the entire simula-
tion the water velocity properly remains within rounding tolerance
of zero. The left figure shows the initial state and the right figure
shows the water surface unchanged after 600 frames.

3.1 Particle Level Set Method

We store a number of layers of particles along the free surface as
is typical in the single grid case. After filling the ghost cells we
seed particles in each ghost and overlapped cell using the updated
φ values. While one could instead exchange particles in this step,
seeding new particles in ghost cells each time step prevents large
particles originating from a coarse grid from adversely effecting
the level set function on a fine grid. Following seeding, the major-
ity of the particle advection and level set correction steps remain the
same as those in the single grid case. We advect the particles using
a second order accurate Runge-Kutta scheme. Subsequently, the
particles are used to correct the φ values both after advection and
after the first reinitialization step only. Recall that the first reini-
tialization modifies the entire grid while the second reinitialization
only modifies overlapped regions.

At the end of each time step we flag any particles that have crossed
the interface by more than their radius (or a small threshold) and
designate these as “removed particles”. This operation is performed
in both the ghost and interior regions of each grid. We discard
any removed particles that are within the interpolation stencil of
an overlapped interior cell. These particles in overlapped regions
represent underresolved features on the coarse grid which are sim-
ulated more accurately on the fine grid. We keep the removed par-
ticles generated in the ghost regions of each grid as they allow us
to track the mass loss which can occur at grid boundaries. This ap-
proach allows a thin feature on a fine grid to move onto a coarse
grid and be tracked as ballistic or passively advected particles for
subsequent rendering, instead of simply having the feature disap-
pear at a grid boundary. Finally, before ending the time step, we
delete all the remaining non-removed particles in the ghost regions
of each grid.

4 Navier-Stokes Equations

We now proceed to describe the remainder of our time evolution
scheme. The inviscid incompressible Navier-Stokes equations are
given as follows:

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇p+ ~f (2)

∇T~u = 0 (3)

where ρ is density, p is pressure, and ~f are external and body forces
scaled by ρ. We solve these equations using a splitting method
where we first solve

u∗ − un

∆t
+ (un · ∇)un = f (4)



Figure 7: A kinematically driven propeller spins with a number of attached Chimera grids. The grids move and rotate with the rigid body
frame of the propeller.

for u∗. Since we use a MAC grid representation, vector fields are
stored as scalar normal components at cell faces. We note that the
component stored at each face corresponds to the component of the
vector field in the world space normal direction of that face. Thus
in order to compute a world space velocity on a specific grid, we
first interpolate the velocity vector in object space and then rotate
that vector into world space. In order to advect the velocity field
we apply the arbitrary-Lagrangian-Eulerian style semi-Lagrangian
scheme described in Section 3. Since grids are not aligned, it is nec-
essary to interpolate a full world space velocity vector at each face
and then take only the component along the face’s normal direction
when filling ghost cell velocity values. Similarly during advection,
we advect a full velocity vector to each time tn+1 face and then
rotate these vectors from the grid’s time tn frame into the grid’s
time tn+1 frame before taking the scalar component in each faces’
normal direction.

Finally we solve for the pressure using

∇2p̂ = ρ∇Tu∗ (5)

Figure 8: The left figure shows three grids laid out in typical fash-
ion with one grid covering the entire domain and two smaller grids
resolving interesting features and/or objects. The right figure shows
the Voronoi mesh used in our pressure solver in order to determine
which degrees of freedom interact with one another as well as the
resulting stencils.

where p̂ is the ∆t scaled pressure, before updating the velocity field
via

un+1 = u∗ − ∇p̂
ρ

(6)

5 Pressure Solver

Many Chimera grid methods use a Gauss-Seidel approach (see e.g.
[Dobashi et al. 2008]) to solve Equation 5 for the pressure, itera-
tively computing boundary conditions while solving independently
on each grid. Convergence is slow, if it occurs at all, and for even
moderately sized systems it is not feasible to iterate to convergence.
Monolithic solvers have been devised by incorporating boundary
condition interpolation operators into the system itself [Henshaw
1994], however this strategy produces an asymmetric system which
is difficult to solve and also has convergence issues requiring a more
complicated solver or preconditioner. Although cut cell methods
produce symmetric positive definite discretizations, they are gen-
erally only first order accurate resulting in spurious errors in the
velocity field that do not vanish under grid refinement. Explicit and
implicit deferred correction methods [Traoré et al. 2009; Chang
and Yuan 2012] have been used to address these errors, however
they also suffer from convergence issues. Water surfaces are partic-
ularly sensitive to the approximations made during discretization,
and we found that it was essential to solve the hydrostatic case ex-
actly as illustrated in Figure 6 in order to prevent spurious vortices
from forming at grid boundaries. Therefore we leverage the mono-
lithic symmetric positive definite discretization for solving Poisson
equations on arbitrarily translated and rotated Cartesian grids from
[English et al. 2012].

Similar to the pressure solvers of [Sin et al. 2009] and [Brochu et al.
2010], a Voronoi diagram is used to construct a staggered velocity-
pressure discretization as illustrated in Figure 8. Proceeding in or-
der from the finest grid to the coarsest, we remove both cells which
contain the cell center of a finer non-removed cell and cells whose
cell center lies within a finer non-removed cell. We then construct
the Voronoi mesh for the non-removed cells. For each non-removed
cell along an intergrid boundary, we first find all neighboring non-
removed cell centers within a specified distance τ . To improve per-
formance, we compute τ for each cell center by finding the finest
grid whose domain shrunken by |∆~x| contains the cell center and
then set τ = 2|∆~x|. Then for each neighboring cell, we construct
the perpendicular bisecting plane between the original cell center
and the neighboring cell center clipping this plane against planes
similarly formed with the other neighboring cell centers. If the re-
sult is not empty, it is a convex polygon which becomes the Voronoi
face between these cells.



Figure 9: Resolving a three dimensional glider (yellow) with a
number of Chimera grids gives it the ability to fly in a large do-
main. The solid line shows the parabolic path a ballistic rigid body
would take if it did not fly. The blue glider is simulated with only
the background grid and falls almost immediately. Meanwhile, the
red and green gliders each use only two of the six grids attached to
the yellow glider. Although the green glider crashes, for illustration
purposes, we can carefully adjusted the position and orientation of
the red glider’s two grids allowing it to fly. Note that this hand-
picked rasterization will remain constant throughout the entire sim-
ulation since the grids move with the glider enabling the user to
handcraft efficient rasterizations that improve the physical realism.
We emphasize to the reader that we did not specially tune the po-
sitions of the grids in the case of the yellow glider as it was well
resolved by its finer grids. Slight perturbations to the placement of
its grids did not alter the glider’s behavior.

For each Voronoi mesh face not coincident with a Cartesian grid
face, [English et al. 2012] interpolated u∗ from the finest available
Cartesian grid. In certain cases, we found that these interpolated
velocities caused noticeable artifacts at grid boundaries. This was
particularly evident when the velocity for a Voronoi face between to
two fine grid cells was interpolated from a much coarser grid result-
ing in large error in the velocity. In order to avoid this problem, we
first compute the cell center velocity at each adjacent cell centers
by averaging on their respective Cartesian grids before taking an
average of these cell center velocities to compute the Voronoi mesh
face velocity. We further modify this in the case of Voronoi faces
along the free surface as follows. Similar to the issues described
for φ values in Section 3 along boundaries between coarse and fine
grids, certain cells may not have valid velocities since they are be-
yond the free surface velocity extrapolation bandwidth. Hence, for
these faces we take the velocity from the incident water cell rather
than averaging from both cells. We found that these modifications
produce a much more accurate velocity and do not cause any no-
ticeable artifacts along grid boundaries.

In order to handle free surfaces, we set a constant Dirichlet pres-
sure boundary condition in air cells and use a second order accurate
cut-cell approach [Enright et al. 2003; Batty et al. 2010] at each
face between an air cell and a water cell. This is straightforward to
apply recalling that we ensured a valid φ value in each cell through
extrapolation at the end of Section 3. After computing the pressure,
we update each face on the Voronoi mesh including all Cartesian
grid faces coincident to faces of the Voronoi mesh. In order to up-
date Cartesian grid faces not coincident to a Voronoi face, we first
compute a full velocity vector at the center of every water cell in

Figure 10: The top two figures show a two-way coupled rigid body
ship that moves under its own power due to the rotation of two artic-
ulated propellers. The lower left figure illustrates that removing the
grids surrounding the propellers limits the realism of the simulation
resulting in a ship that churns water but cannot propel itself for-
ward. The lower right figure shows that removing the grids around
the ship results in a loss of buoyancy and the ship falls through the
large grid sinking to the bottom of the ocean.

the Voronoi mesh. This requires a local least squares fit of the face
values for irregular cells. Next, we extrapolate cell velocities across
the level set water interface on the Voronoi mesh in order to guar-
antee a valid interpolation stencil for removed water cells. This ex-
trapolation is accomplished using two Jacobi style iterations across
the entire mesh where the velocity is computed by averaging the
velocities from all adjacent cells with valid velocities. Then the ve-
locity for each removed cell is computed using standard multilinear
interpolation in the Cartesian regions and barycentric interpolation
over the Delaunay triangle dual mesh elsewhere. Finally, Cartesian
grid face velocities are computed by averaging from the neighbor-
ing Cartesian grid cell centers using only a one sided average in the
case that only one of its neighbors is a water cell (with the other
being air).

After updating each water face, we fill the ghost cells and extrap-
olate velocities into the air using the fast velocity extrapolation of
[Enright et al. 2002b]. Note that we may not be able to interpolate
a valid velocity for every ghost face depending upon the discretiza-
tion of the overlapping grid. We handle this case by updating the
invalid ghost cell faces in the extrapolation procedure as if they
were air faces.

In our tests we found that we were computationally bound and that
communication costs were relatively minimal compared the other
parts of the code. However, as we scale up to more processors the
preconditioned conjugate gradient method used to solve the two-
way solid-fluid coupled Poisson equation system will become the
bottleneck especially due to the frequent communication costs. We
applied a block diagonal preconditioner in which we partition the
variables in two sets corresponding to the pressures, and solid-fluid
coupling/articulation Lagrange multipliers. The diagonal block cor-
responding to the pressures was preconditioned using an incom-
plete Cholesky (0-fill) factorization and the block corresponding
to the lagrange multipliers was diagonally preconditioned. When
computing in parallel, the incomplete Cholesky preconditioner was
applied independently on each computational node to the diagonal
block corresponding to the local pressures only. We did not experi-



ence any significant drop in the effectiveness of the preconditioner
as a result. However, we observed that without the diagonal pre-
conditioning of the Lagrange multiplier block, the residual could
remain large in the parts of the equations that represent the solid-
fluid coupling even though the incompressibility of the fluid is ad-
equately enforced. In fact, the method would sometimes not even
converge, resulting in spurious behavior including objects incor-
rectly sinking. However, this problem is not a result of our pressure
discretization in particular and occurs with many monolithic solid-
fluid coupling methods as the resolution is increased. On the other
hand, we experienced no convergence issues or spurious behavior
after applying the diagonal preconditioner.

6 Object Interaction

As shown in Figures 1, 2, and 7 – 11 we often attach grids to solid
objects. Since each grid simply moves with its object preserving
the relative placement of the fluid degrees of freedom with respect
to the object interface, the object only needs to be rasterized once
at the beginning of a simulation. This allows for a greater level of
user control in crafting the initial rasterization (see the note about
the red plane in Figure 9), especially as far as rasterized normals,
watertightness, etc. are concerned.

After filling the level set ghost cells at the beginning of the time
step, we extrapolate the level set into objects using the fast march-
ing method. Similarly after filling the velocity ghost cells, we set
the velocity on each face inside an object to the pointwise object ve-
locity. In the case of kinematic objects, we set a Neumann boundary
condition on each occluded face of the Voronoi mesh. In the two-
way coupled case, we follow the approach of [Robinson-Mosher
et al. 2011] using a constraint equation and Lagrange multiplier
force for each occluded face of the Voronoi mesh in order to en-
force equality between fluid and solid velocities.

In order to compute the time step, we assume that objects move
with constant linear and angular velocity in order to approximate
the time tn+1 locations of the grids bound to these objects. How-
ever, the actual displacement during a time step will be affected
by acceleration under gravity and buoyancy, interaction with other
objects through contact, collision, and articulation, etc. Thus, the
actual motion of the grid may exceed that predicted by the time step
computation at the beginning of the time step. We handle this by
filling additional ghost cell layers before advection and found the
added cost to be small.

7 Pseudocode

We now summarize our time evolution scheme which is derived
from the Newmark scheme used in [Robinson-Mosher et al. 2008].
Note that we use forward Euler in the solid position step in order
to eliminate the additional solid-fluid coupled solve for efficiency.
The resulting scheme is as follows:

1. Compute time step
2. Integrate solid positions using time tn velocities
3. Update grid positions
4. Fluid advection step (§ 3 and § 3.1)

(a) Fill φ and velocity ghost cells, and reseed particles in
ghost cells and overlapped regions

(b) Advect φ
(c) Advect particles
(d) Modify the levelset by particles independently on each

grid

(e) Fill φ ghost cells and reintialize φ independently on
each grid

(f) Modify the levelset by particles independently on each
grid again

(g) Inject φ values into cells overlapped by finer grids and
reintialize φ in injected cells

(h) Advect velocities
(i) Inject velocities into cells overlapped by finer grids

5. Integrate solid velocities using gravity and contact forces
6. Integrate fluid velocities using gravity
7. Construct Voronoi mesh (§ 5)
8. Extrapolate φ values on Voronoi mesh along the free surface

at grid boundaries (§ 5)
9. Interpolate φ values in removed cells using Delaunay mesh

and reinitialize interpolated cells (§ 3)
10. Pressure projection step (§ 5 and § 6)

(a) Compute Voronoi mesh face velocities
(b) Construct pressure Poisson system and solve for pres-

sure and constraint Lagrange multipliers
(c) Update velocities on Voronoi mesh and at coincident

Cartesian faces
(d) Extrapolate velocities on Voronoi mesh
(e) Interpolate cell centered velocities using multilinear

and barycentric interpolation and update remaining
Cartesian face velocities

(f) Integrate solid velocities using constraint Lagrange
multipliers

11. Fill velocity ghost cells and extrapolate velocities indepen-
dently on each grid

12. Remove escaped particles, exchange removed particles be-
tween grids and delete particles in overlapped regions, ghost
cells and inside solids (§ 3.1)

8 Results

In order to render the free surface without visible cracks at grid
boundaries we modify the raycasting approach used in [Enright
et al. 2002b] to intersect a composite signed distance function.
For each sample location the composite signed distance function
is computed by considering each overlapping grid in order from
coarsest to finest and blending the φ value from the current grid with
the φ value computed from blending the coarser grids. The blend-
ing fraction is found by scaling and clamping the signed distance
function to the grid boundary so that the fraction is 0 at the edge
of the grid’s interpolation domain and 1 several cells within the
grid. While the resulting composite φ function is no longer a strict
signed distance function, the implicit surface defined at φ(~x) = 0
is smooth and by blending the normals in a second step using the
same procedure, rendering artifacts are avoided. In Figure 7 we ad-
ditionally render the removed negative particles as transparent spray
by directly ray tracing the particles as metaballs which are blended
with the level set. Additionally in Figure 7 when a removed nega-
tive particle falls back into the water we reincorporate it into sim-
ulation and apply a small impulse to the fluid velocity so that the
particle does not simply disappear without affecting the water sur-
face. In Figures 1 and 11 we render the removed negative particles
as a density field defined as the sum of kernel functions centered at
each particle. Additionally, a Phillips spectrum was used to bump
map the water to give it added detail as described in [Tessendorf
2002].

We provide relative timing data for the propeller and island exam-
ples in Table 1. Note that while the overhead of the added second
grid is significant, it does not dominate the simulation time and
improves under refinement. Further optimization of the implemen-
tation could easily reduce this overhead. In the example shown in



Entire
time step

Filling ghost and
overlapped cells

Reseed
particles

Semi-Lagrangian
and particle
Advection

Construct mesh Projection Extrapolate
velocities

Delete
particles

island, 1 proc 914 23 41 157 318 310 12.3 51
island, 39 procs 85 3.3 5.2 17 24 29 2.2 4.2
propeller, 1 proc 299 7.2 8.5 50 114 109 5.2 2.7
propeller, 23 procs 47 1.8 .87 8.7 17 17 1.5 .19

Table 1: Timing data (in seconds) for the island and propeller examples. The table includes timing only for the major steps of the algorithm.

Figures 1 and 11, 17 grids were used with a total of 6 million cells.
By extending the finest cell’s ∆x to the background grid, the effec-
tive resolution of the simulation was 36500×3650×36500. While
the effective resolution could be made arbitrarily large by decreas-
ing the size of the smallest cell, it does give a sense of the disparate
scales being resolved.

9 Conclusion

We proposed a novel spatially adaptive method for simulating free
surface incompressible flows using Chimera grid embedding. We
included a number of examples which demonstrated the ability of
the method to produce accurate physical behavior in two-way solid-
fluid coupling problems by locally refining space near solid objects.
There is considerable future work to be done, such as developing
a conservative advection scheme and extending the method to a
FLIP based solver. Additionally, improving the velocity mapping
between the Cartesian grids and the Voronoi mesh in order to elim-
inate higher order artifacts in the velocity field (noted as vorticity
artifacts in [English et al. 2012]) which could limit the use of vor-
ticity confinement is an important problem to be addressed. Never-
theless, we noticed no visible artifacts in the free surface due to this
issue. However, as in many other adaptive scheme, if the grading
was too large (by factors of approximately 6 or more), slight reflec-
tion of waves could be seen at boundary, although this was straight-
forward to avoid by using multiple enclosing grids to achieve an
acceptable grading. Increasing the scope of dynamic adaptivity be-
yond simply following objects also holds significant promise —
one could have grids follow vortices and other turbulent features
in addition to objects by tracking. Overall, although our approach
loses some flexibility while compared to fully unstructured meth-
ods, it strikes an optimal balance between structure and adaptivity,
allowing large scale simulations with features on many scales to be
concurrently simulated while utilizing modern computer hardware
and distributed computing resources. Figures 1 and 11 demonstrate
the potential of the method.
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