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Abstract

We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of
moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity.
Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate
any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization
is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the
development of a method for solving the heat diffusion equations. The most intricate aspect of any such
discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or
that resulting from the temporal discretization of parabolic terms. We address this by first removing any
degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a
discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust
second order accurate symmetric positive definite readily preconditioned discretization can be obtained by
constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both
its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid
interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi
mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach
on test problems in order to show efficacy and convergence before finally addressing a number of common
test cases for incompressible flow with stationary and moving solid bodies.

1. Introduction

Adaptive discretizations are important in many incompressible flow problems since it is often necessary to
resolve details on multiple levels. In fluid structure interaction problems it is critical to resolve the turbulent
flows in the wakes behind objects in order to accurately predict even large scale behaviors. In many problems
accurately modeling far field boundary conditions is also important and necessitates a method that allows
large regions of space to be modeled using a reduced number of degrees of freedom. There are a wide variety
of methods for adaptively discretizing space. Unstructured methods include both mesh based methods which
use topologically connected meshes constructed with tetrahedra (see e.g. [46, 45, 63]), hexahedra and other
irregularly shaped (see e.g. [23, 59, 14, 43]) and non-linear elements, as well as meshless methods which use
disjoint particles such as Smoothed Particle Hydrodynamics (SPH) (see e.g. [27, 58, 82, 22, 20]) and the
Moving-Particle Semi-Implicit method (see e.g. [47, 90]). While these methods allow for conceptually simple
adaptivity they often produce inaccurate numerical derivatives due to poorly conditioned elements. Dynamic
remeshing, such as that used in many Arbitrary Lagrangian Eulerian (ALE) schemes (see e.g. [84, 39]), can be
used to control the conditioning of elements during simulation. However, in addition to the significant added
computational cost and complexity, these methods tend to introduce significant numerical dissipation if values
need to be remapped (see e.g. [61, 60, 56, 57, 48]). In order to avoid these issues, many methods combining
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unstructured and structured methods have been developed. The two most well known are the Particle-In-Cell
method (PIC) (see [30]) and the Fluid-Implicit Particle method (FLIP) (see [11, 10]) which use Lagrangian
particles for advection and a background grid to solve for pressure. Other authors have explored using
structured and unstructured methods to model different flow regimes within the same simulation, such as
by combining SPH and Cartesian grid solvers (see e.g. [55]). While there is a wealth of literature addressing
the mathematical issues of unstructured methods with regards to remeshing and computing accurate high
order numerical stencils, the computational complexity and cost of these methods can still weigh heavily
against the level of adaptivity afforded. For example, due to the unstructured nature of these discretizations
it is generally not possible to store data in a cache coherent memory layout. Instead, pointer structures are
often used to store values incurring a suprisingly large computational expense due to the high number of
indirections during traversal and the resulting increase in cache misses. Furthermore, in parallel computing
environments, finding and maintaining a domain decomposition that evenly distributes the computational
work load and storage requirements can cost as much as or even more than the time integration procedure.

Alternatively, structured methods predictably place degrees of freedom allowing for accurate and simple
finite difference schemes, light weight cache coherent data structures and straight forward domain decomposi-
tion. Despite their lack of adaptivity, Cartesian grids have often outperformed adaptive methods even at high
resolutions due to their simple and accurate numerical stencils as well as their regular layout of data in mem-
ory allowing for fast traversal. Often the most effective methods are structured methods tailored to specific
problems, such as manually generated curvilinear grids (see e.g. [18, 15, 87, 25]) where where logically rectan-
gular grids are parametrically deformed to conform closely to the solid interface. Structured methods allow
for many times the number of degrees of freedom to be used when compared to even the most efficient adaptive
schemes, at the same computational cost. In order to exploit the efficiency of structured methods, authors
have explored directly adding adaptivity to structured discretizations through methods such as octrees (see
e.g. [54, 53, 17, 64, 68]), and adaptive mesh refinement (AMR) (see e.g. [9, 8, 52, 3, 81, 62, 21, 66, 74, 42]).
While allowing for similar levels of adaptivity as unstructured methods, octrees and similar hierarchical
structures suffer from the similar issues of cache coherency and domain decomposition, even if care is taken
to maximize cache coherency and minimize indirections.

Block structured AMR methods allow multiple Cartesian grids to be patched upon one another in order
to allow higher resolution grids to represents parts of the domain with fine details, while the majority of the
domain is covered by a single coarse grid. As a result AMR methods have been extremely successful due to
their block Cartesian grid structure resulting in improved cache coherency and low cost decomposition, if the
number of patches and repatching frequency are small enough, while providing for spatial adaptivity. In [9]
grids were allowed to be both translated and rotated allowing accurate tracking of solid boundaries and flow
features. However, in subsequent work (see e.g. [8]) grids were constrained to lie along the same axes and
have coarse grid lines match up with fine grid lines along patch boundaries, thus simplifying the construction
of computational stencils. In order to capture non-grid aligned features this then forces one to either sacrifice
the efficiency of the method by requiring either the use of large fine grids to cover these features unnecessarily
refining space far away from these features, or the creation of many small grids essentially rasterizing these
features resulting in problems similar to those of hierarchical structured methods (e.g. octrees). Many modern
AMR schemes are fully unstructured and allow for cell-wise refinement. In this case space-filling curves (see
e.g. [2]) can be used to improve cache coherency and simplify domain decomposition. However, they still
incur a significant computational overhead when compared to block structured approaches and can have
high communication costs when repartitioning the domain. Chimera grid methods (see e.g. [7, 80, 5, 6, 79])
also rely upon building adaptive discretizations by patching together independent grids. Unlike standard
AMR, Chimera grids are more general allowing for many types of grids (such as Cartesian, curvilinear
and deforming) to be rotated and moved while being used together to decompose a single domain without
explicitly constructing an global mesh with regular connectivity. Chimera grid methods have also been
combined with AMR methods allowing for block structured adaptivity on each component grid [35, 36, 37].

In Chimera grid schemes, the solution on different grids is coupled by exchanging boundary conditions.
For explicit operations such as advection this is typically achieved by interpolating ghost cell values from
overlapping grids before running the single grid code on each grid independently. When implicitly solving
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for stiff terms such as viscous or pressure forces, this process is typically iterated in Gauss-Seidel fashion
until converged in order to strongly couple the solution. This partitioned coupling often suffers from slow
convergence and in certain cases the individual systems can even be singular as reported by [13, 38] which
can cause the solver to diverge. Certain authors (see e.g. [31, 32]) have instead directly substituted the
interpolation stencils used to fill ghost and overlapped cells directly into the system matrix in order to
exploit more robust solvers. While this avoids many of the convergence issues of Gauss-Seidel approaches,
the resulting system is asymmetric and can be expensive to solve robustly. Despite this, many efficient
methods have developed to solve these system such as multigrid methods [34, 33] and approximate factored
schemes [40]. Coupling together overlapping grids has received significant attention within the literature
(see e.g. [69, 70]). One popular approach to implicitly coupling grids together are cut cell methods (see
e.g. [86]) which alter the cells on each grid by removing the parts of these cells overlapped by finer grids.
In order to build divergence operators these methods used a finite volume approach to compute divergence.
Computing the gradient at cell faces is considerably more problematic due to the creation of faces which are
not orthogonal to the line between the pressure samples at incident cells. As a result, using the pressure
difference between the samples located at incident cell centers can introduce errors which do not vanish as
the grid is refined. Deferred correction methods (see e.g. [44, 83]) apply an iterative process in order to
compute the correct pressure gradient at faces by reconstructing the full gradient at faces using the values
computed in the previous time step or iteration. However, these methods do not guarantee the existence of
a unique solution, and as a result can be extremely slow to converge to the correct solution if at all. [16]
addressed this problem by including the stencil for reconstructing the full gradient in the system matrix,
however this results in an asymmetric and possibly indefinite matrix with complicated stencils.

We propose a Chimera grid method which combines multiple moving and arbitrarily oriented Cartesian
grids into a single computational domain. These grids are allowed to move both kinematically and as dynamic
elements driven by the flow or attached to immersed rigid bodies. In order to couple together the solution at
grid boundaries and in overlapped regions we compute values for ghost cells and cells in overlapped regions
by interpolating values from finer overlapping grids as described in Section 2.1. In Section 3.2 we introduce
both first and second order accurate ALE advection methods built using the semi-Lagrangian tracing of
rays backwards and forwards in time in order to both avoid requiring an expensive time step stability
restriction and to remap values in a single step without introducing additional numerical dissipation. In
order to efficiently advect values and exploit Cartesian grid data structures, our ALE advection scheme first
constructs a velocity field on each grid taking into account the grid’s motion and then applies the single grid
advection code. Since this process relies on interpolating values from the local grid at locations outside of
each grid’s time tn and time tn+1 domains we use a fixed number of ghost cells. This imposes a loose time
step restriction based both upon the fluid velocity and grid motion which we discuss in Section 3.3.

In order to implicitly solve for pressure and viscous forces we introduce a new spatial discretization
of the Laplacian operator in Section 4.1 where a Voronoi diagram (see e.g. [65]) is used to determine the
connectivity of the pressure samples and the corresponding face areas used in the stencils along intergrid
boundaries. By using a Voronoi diagram to define the cell geometry we are guaranteed orthogonal centered
finite differences at faces, allowing us to exactly satisfy hydrostatic problems and compute pressure values
to second order accuracy. We build the Voronoi diagram by considering pairs of cells along the intergrid
boundary and computing the geometry of the face incident to each of these pairs by clipping a candidate
plane by the candidate planes formed between nearby cell pairs. By directly computing the Voronoi diagram
we avoid the issues of robustness and efficiency associated with methods which compute the Delaunay
triangulation before computing the dual Voronoi diagram. We note that while our method does not produce
the complete connectivity information, it is only necessary to compute the face areas and corresponding cell
adjacency information in order to define the stencils in our discretization. As a result our method is robust to
perturbations in the positions of degrees of freedom. Furthermore by computing a continuous discretization
as opposed to the overlapped discretizations and coupling methods of previous Chimera grid schemes, the
resulting linear system is symmetric positive definite (SPD) allowing us to apply efficient linear solvers such
as preconditioned conjugate gradient. We apply our discretization to several Poisson equation examples in
Section 4.2. We then extend our discretization to solve heat equations on the cell centers of moving grids in
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Section 5. In order to solve for viscous forces on the staggered face velocity degrees of freedom we compute
cell center velocities and then solve a heat equation independently in each direction using the cell center
formulation before averaging the differences back to the original face degrees of freedom in order to update
the original staggered degrees of freedom in Section 5.1.

In both the viscosity and pressure solves we address one-way coupled fluid-structure interaction using
a simple immersed boundary approach by specifying the velocity at overlapped cells and faces. Although
in this paper we do not address two-way coupled fluid-structure interaction, an iterative two-way coupled
approach could be adapted (see e.g. [88, 85, 89]). While these approaches use similar discretizations for the
coupling equations, they often require complicated and expensive iterative integration schemes in order to
achieve stability. Alternatively, a simple monolithic approach such as that in [72] could be used to allow for
stable two-way coupling while retaining a fully SPD discretization.

Finally, we summarize our method for incompressible flow, including interaction with static and kine-
matic objects in Section 6. Numerical results are provided in Section 6.1 including a Couette flow example
demonstrating converge towards the analytic solution, a lid driven cavity example showing similar velocity
profiles and vortex patterns as [26], an example with a two-dimensional vortex flowing from a fine grid
to a coarse grid demonstrating self convergence, a two-dimensional flow past a stationary circular cylinder
example showing the correct drag coefficients, lift coefficients and Strouhal numbers as compared to those
published and cited in [41], and a flow past a rotating elliptic cylinder example showing self convergence
for the case with a rotating solid and attached grid. We also include a more complicated example in two
dimensions with three rotating elliptic cylinders, and one three-dimensional example with a rotating ellipsoid
in order to emphasize the simplicity and feasibility of our approach.
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Figure 1: We store scalar fields φ at cell centers and vector fields (u, v) as scalar components in the normal direction at each
face. Note that face normal directions are tied to the grid orientation and that when reconstructing a world space vector it is
necessary to rotate the object space vector into world space (i.e. ~uworld = R~uobject where ~uobject = (u, v)).

2. Grids and Parallelization

Our Chimera grid simulation framework consists of a collection of grids that partition the simulated
domain into regions of interest as shown in Figure 2. In this paper we consider only Cartesian grids undergoing
rigid motion as described by a rigid frame consisting of a translation and a rotation. We represent a rigid
transformation as the combination of a rotation using a rotation matrix, R, and a translation vector, ~s.
Using these representations we relate locations and vectors in world space to those in a grid’s object space
using the equations

~xworld = R~xobject + ~s (1)

~uworld = R~uobject (2)

Similar to other rigid body dynamics implementations we internally store the orientation of each grid as a
unit quaternion. However, for the purposes of this exposition it is simpler to work with rotation matrices.
In order for fine resolution grids to exactly follow the motion of objects in the fluid flow, we allow grids’
rigid frames to be pinned to the transformations of their respective rigid bodies. We also allow grids to be
kinematically driven to follow flow features depending upon the problem.

In order to exploit existing single-grid code, our framework stores the original single-grid data structures
for each grid in its own container. For each grid, these include a set of arrays storing values lying at cell
or face centers, including quantities such as density, pressure and velocity. Also included in this container
is the structural information for the associated grid, including the Cartesian grid parameters, (the grid’s
domain and cell counts in each dimension) as well as the grid’s rigid frame. We represent field quantities in
object space using a Marker-and-Cell (MAC) representation [29] as illustrated in Figure 1. Scalar quantities
are represented as cell center samples and vector quantities are represented as a staggered arrangement of
scalar samples stored at face centers with each sample representing the component of the vector field in the
world space normal direction of the corresponding face. While scalar field samples can be used directly since
they are invariant to the orientation of the grid, vector quantities must be rotated into world space. Thus,
In order to construct a full velocity vector in world space, we apply the regular interpolation scheme in the
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grid’s object space and then transform the vector to world space by using Equation 2 to rotate the vector.
This means that if a grid which was originally aligned with the world space axes is rotated by 90 degrees, all
the x-velocity MAC grid faces would have to be switched to the y-velocity MAC grid faces–more generally,
one needs to be careful to account for the fact that the components of velocity stored on faces change as the
grid rotates (but are not affected by translation).

We note that while in certain parts of the algorithm in Sections 5 and 6 we exploit cell centered velocities
to simplify interpolation and to allow us to decouple the velocity components during the viscous solve, the
persistent velocity representation is staggered. A staggered arrangement is necessary due to the centered
differencing in the gradient, divergence and Laplacian operators used in the Poisson equation discretization.
It is well known that neighboring pressures and velocities become decoupled if a collocated velocity repre-
sentation is used in combination with centered differencing. This decoupling can lead to instability and is
avoided by using a MAC representation.

2.1. Explicit Grid Coupling

While our method applies fully implicit coupling to compute the pressure and viscosity terms across
multiple grids, an explicit coupling scheme is suitable for operations that do not involve global communi-
cation/coupling such as our semi-Lagrangian advection scheme (noting that one could alternatively use an
implicit scheme for advection in which case a more strongly coupled approach would be necessary or that
one could solve the heat equation explicitly in which case an explicit coupling approach would be sufficient).
Grid coupling most naturally occurs near the exterior boundary of a grid where computational stencils reach
across the boundary and require information available on one of the other grids. Although one could simply
interpolate the required values from the appropriate grid when evaluating numerical stencils, this approach
typically leads to increased code complexity and issues with cache coherency, thus increasing computational
cost.

Instead, in our method each grid is allocated a band of ghost cells surrounding its domain. By filling
these ghost cells with valid data from other grids that overlap these cells as shown in Figure 2 (Left), we
can proceed to perform operations on each grid independent of the other grids, which is typical of block
structured AMR approaches. We regard a cell/face as overlapped by another grid if and only if it lies inside
the grid’s interpolation domain, i.e. a valid interpolation stencil exists in the grid domain. For example, in
the case of linear interpolation, a cell or face center has to be at least a distance of ∆x/2 inside the grid
domain boundaries to be considered as overlapped by that grid–this means that it is inside the rectangle
created by the four (in two spatial dimensions, or eight in three spatial dimensions) neighboring cell centers
on the grid that we are interpolating from (although we have not implemented it, in the special case of
aligned grids, this ∆x/2 restriction can be relaxed for face centers in the dimension parallel to the face
normal). When multiple grids overlap a given ghost cell, we always interpolate from the finest overlapping
grid (see Figure 2 (Left)). The number of ghost cells for each grid is determined by considering both the
stencils used by the operators being applied to each grid, and the relative motions of the grids. The method
for deciding the number of ghost cells is detailed in Section 3.

While the use of ghost cells and an appropriate time step restriction provides each grid with access to all
the values they need to evaluate numerical stencils, tests showed that values on the interiors of overlapped
grid regions could tend to gradually drift apart. Moreover, in the case of a fine grid completely contained
within a coarse grid, the values calculated on the overlapping fine grid would never feed back into the coarse
grid, unless the fine grid is moved to overlap the ghost cells of the coarse grid. We resolve this issue by
replacing the value of every overlapped coarse cell by a value interpolated from a finer grid that overlaps it
(using the finest grid possible), as shown in Figure 2 (Right). Note that this can incur a large communication
cost when using MPI which can be resolved without affecting the solution by only filling a band of these cells
near non-overlapped cells (see Figure 3) as is done in typical Chimera grid methods. When filling overlapped
cells, the order in which the grids are filled affects the final outcome since we use the most recent values
when interpolating. Hence, we fill grids from fine to coarse as illustrated in Figure 2 (Right).
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Figure 2: The explicit grid coupling between two partially overlapping grids (red and green) and a blue background grid. The
green grid is finer than the red grid, and the blue grid is the coarsest. For clarity, each grid has only one layer of ghost cells in
this example. (Left) Ghost cells are filled with values interpolated from the finest overlapping grid with a valid interpolation
stencil. The dotted cells are the ghost cells of the grids. The color of each dot indicates which grid its value is interpolated
from. The blue background grid’s ghost cells (marked with gray squares) have no data to interpolate from, thus will be filled
according to the boundary condition. (Right) Overlapped interior cells are filled with values interpolated from a finer grid.
Note that we fill grids from fine to coarse and use the finest grid with a valid interpolation stencil when interpolating values.
The dotted cells are overlapped by finer grids. The color of each dot indicates which grid its value is interpolated from, and the
fill color of a cell helps clarify which grid the cell belongs to.

Figure 3: Illustration of the lower-dimensional layer of overlapped cells. A fine red grid is shown overlapping a coarse blue
grid. In this example, we only fill the shaded blue grid cells with data from the red grid and otherwise ignore the hollowed out
interior region of the blue grid. Based on the stencils used to update the blue grid as well as the subsequent motion of the red
grid, one can specify how large of an interior region can be hollowed out to reduce the communication from the red grid to the
blue grid down to a lower-dimensional set for the purpose of communication optimization while still providing all the relevant
data from the red to the blue grid.
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Figure 4: Grids are split into subgrids and assigned to multiple processors. Grids with the same color correspond to a single
grid before splitting. The number on each subgrid indicates the index of the corresponding processor.

2.2. Parallelization

Once the ghost cells on each grid have been filled, the explicit operation can be performed on each grid
independent of other grids. This makes it feasible to parallelize our algorithm using MPI by assigning each
grid and its associated data container to a distinct processor, where the communication between processors
is only necessary when filling ghost cells and filling overlapped regions. While data is distributed and
consequently each grid’s associated data container is only visible to one processor, the structural information
(rigid body frames, domain sizes and cell sizes) for all the grids is stored identically in every process. This
redundantly stored information is very lightweight and adds only a negligible increase in memory. However,
it conveniently informs every process of the entire domain decomposition so that each processor can readily
decide which other processes it sends to and receives from.

In order to make full use of computational resources, our software takes an approach similar to that used
in [37] and implements a procedure to split grids in order to balance the number of spatial degrees of freedom
in each process. One example of how grids are split is given in Figure 4. Each of the 12 subgrids in Figure 4
behaves the same as a standalone grid except for the following differences. The ghost cells along splitting
boundaries between subgrids are filled first using simple injection as opposed to interpolation, noting that
simple injection (as opposed to interpolation) is sufficient since the ghost cells are collocated with real cells
from the adjacent subgrids. This means that each of the black, red and blue composite grids in Figure 4 will
first sync up among its own subgrids. After that the algorithm can proceed as if no grid splitting took place,
instead only dealing with the composite black, red and blue grids. One caveat is that when interpolating
from a grid that is divided into subgrids, a cell that lies near the subgrid boundaries could interpolate from
any of the adjacent subgrids–however one obtains the same answer regardless of which subgrid is used.

3. Advection

We consider both first order accurate semi-Lagrangian advection as well as second order accurate semi-
Lagrangian style MacCormack (SL-MacCormack) advection as introduced in [76]. We have chosen to apply
these method-of-characteristics type approaches to exploit their unconditional stability in order to avoid the
strict time step restrictions which can be imposed by very small cells on fine grids. The coupling between
grids has been addressed in Section 2.1 allowing advection to be performed independently on each grid. In
order to account for the effect of each grid’s motion while exploiting existing single-grid implementations,
we have implemented a wrapper function which transforms the velocities, used to advect values, from world
space to each grid’s object space. This is detailed in Section 3.2.

3.1. Semi-Lagrangian-MacCormack Advection

Before presenting our Chimera grid advection approach we discuss a few aspects of the SL-MacCormack
method of [76], in order to clarify a few important details not discussed in the original work. We consider
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the advection equation

∂φ

∂t
+ ~u · ∇φ = 0 (3)

where φ is a scalar quantity and ~u is a divergence free velocity field. In first order accurate semi-Lagrangian
advection, characteristic paths are traced backwards in time to find locations from which to interpolate new
values. Equation 3 is discretized using this approach as follows:

φn+1(~x) = φn(~x−∆t~un(~x)) (4)

where φn+1 are the updated time tn+1 values, φn are the time tn values, and ~u is the velocity field.
The SL-MacCormack method is then built using this first order accurate scheme to advect values forward

and backward in time during each time step in order to estimate the advection error. It is assumed that in
both of these steps, approximately the same error is added to the resulting values. Thus, we advect the time
tn values φn(~x) forward in time to obtain the temporary forward advected values as follows:

φ̂n+1(~x) = φn(~x−∆t~un(~x)) (5)

These values are then advected backward in time as follows:

φ̂n(~x) = φ̂n+1(~x+ ∆t~un(~x)) (6)

Subsequently, the advection error is approximated and the final solution is computed as follows:

E(~x) = (φ̂n(~x)− φn(~x))/2 (7)

φn+1(~x) = φ̂n+1(~x)− E(~x) (8)

where E(~x) is the error and φn+1(~x) is the final solution.
Whereas [76] only considered time-constant velocity fields in their precise analysis of the method, we

consider time-varying velocity fields. First consider an initial circular bump function

φ(~x) =

{
e

(
2− 2

1−(‖~x−~xc‖/r)2

)
if ‖~x− ~xc‖ < r

0 if ‖~x− ~xc‖ ≥ r
(9)

where ~xc = (0, .5) is the center of the bump and r = .45 is the radius of the bump. Then a single time-varying
vortex velocity field defined by the stream function

Ψ(x, y) =
2

π
sin2

(
π
x− 1

2

)
sin2

(
π
y − 1

2

)
, (x, y) ∈ [−1, 1]× [−1, 1] (10)

is time-modulated by cos(πt/8) so that analytically the bump function will be twisted to its maximum extent

at t = 4 and returned to its exact initial value at t = 8. We define the error norms as L1({e1, ..., en}) =

n∑
i=1

|ei|

and L∞({e1, ..., en}) = max
i∈[1,n]

|ei| where ei is the error at the ith grid location. Note that these definitions for

the L1 and L∞ norms are applied to a number of error measurements throughout the rest of the dissertation.
The order of accuracy is computed using three successive grids and plotted against time in Figure 5 (Top)
for Equations 5-8. Note that in the second half of the graph the solution drops to first order accuracy and
worsens under refinement. Instead, second order accuracy is obtained by modifying Equations 5 and 6 to use
velocities at time tn+1/2 as shown in Figure 5 (Middle) but not by using velocities at time tn (which was not
pointed out in [76]). To clarify that this is a temporal error, Figure 5 (Bottom) uses a fixed ∆t for all grids
emphasizing that time tn velocities still lead to second order accuracy in space. In practical simulations,
although the velocity field at time tn+1/2 is unknown when advecting from time tn to time tn+1, the spatial
errors are often larger than the temporal errors, which implies that using time tn velocities will often be
satisfactory in practice.
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Figure 5: The order of accuracy of a time-varying single vortex test in two spatial dimensions with the SL-MacCormack method.
(Top) uses velocities at time tn for advection and a fixed CFL number. (Middle) uses velocities at time tn+1/2 for advection
and a fixed CFL number. (Bottom) uses velocities at time tn for advection and fixes ∆t to the value used on a 4096-point grid.
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We now perform a one-dimensional accuracy analysis to show that using time tn+1/2 velocities achieves
second order accuracy. Consider the one-dimensional version of Equation 3 as follows:

∂φ

∂t
+ u(x, t)

∂φ

∂x
= 0 (11)

Assuming a positive velocity and a CFL less than one, we discretize Equation 11 using forward Euler in time
and upwinding in space to get the forward advection step as follows:

φ̂n+1
i = φni +

∆t

∆x
u
n+1/2
i (φni−1 − φni )

Similarly, the backward advection step can be discretized as

φ̂ni = φ̂n+1
i +

∆t

∆x
u
n+1/2
i (φ̂n+1

i+1 − φ̂
n+1
i )

Then the final solution of the SL-MacCormack advection is

φn+1
i = φ̂n+1

i − (φ̂ni − φni )/2

= φni −
∆t

∆x
u
n+1/2
i (

φni+1 − φni−1

2
) +

∆t2

2∆x2
((u

n+1/2
i )2(φni−1 − φni ) + u

n+1/2
i u

n+1/2
i+1 (φni+1 − φni )) (12)

In order to eliminate the reference to u
n+1/2
i+1 we substitute u

n+1/2
i+1 = u

n+1/2
i + ∆x

∂u
n+1/2
i

∂x + O(∆x2) into
Equation 12 and after simplification we get

φn+1
i =φni −

∆t

∆x
u
n+1/2
i (

φni+1 − φni−1

2
) +

∆t2

2∆x2
((u

n+1/2
i )2(φni+1 − 2φni + φni−1)

+ u
n+1/2
i (∆x

∂u
n+1/2
i

∂x
+O(∆x2))(φni+1 − φni )) (13)

We further simplify Equation 13 by substituting
φn
i+1−φ

n
i−1

2∆x =
∂φn

i

∂x +O(∆x2),
φn
i+1−2φn

i +φn
i−1

∆x2 =
∂2φn

i

∂2x +O(∆x2),

and
φn
i+1−φ

n
i

∆x =
∂φn

i

∂x +O(∆x) which results in the final expression for the MacCormack update as follows:

φn+1
i =φni −∆tu

n+1/2
i

∂φni
∂x

+
∆t2

2
((u

n+1/2
i )2 ∂

2φni
∂x2

+ u
n+1/2
i

∂u
n+1/2
i

∂x

∂φni
∂x

)

+O(∆t2∆x+ ∆t∆x2 + ∆t2∆x2) (14)

In order to show second order accuracy we next compute a Taylor expansion for φn+1
i in time with respect

to φni and then use Equation 11 and the chain rule in order to exchange temporal and spatial derivatives as
follows:

φn+1
i =φni + ∆t

∂φni
∂t

+
∆t2

2

∂2φni
∂t2

+O(∆t3)

=φni −∆tuni
∂φni
∂x

+
∆t2

2
(−∂u

n
i

∂t

∂φni
∂x

+ (uni )2 ∂
2φni
∂x2

+ uni
∂uni
∂x

∂φni
∂x

) +O(∆t3) (15)

Finally we substitute the Taylor expansions u
n+1/2
i = uni + ∆t

2
∂un

∂t + O(∆t2) and
∂un

i

∂x =
∂u

n+1/2
i

∂x + O(∆t)
into Equation 15 as follows

φn+1
i =φni −∆t(u

n+1/2
i − ∆t

2

∂un

∂t
)
∂φni
∂x

+
∆t2

2
(−∂u

n
i

∂t

∂φni
∂x

+ (u
n+1/2
i )2 ∂

2φni
∂x2

+ u
n+1/2
i

∂u
n+1/2
i

∂x

∂φni
∂x

) +O(∆t3)

=φni −∆tu
n+1/2
i

∂φni
∂x

+
∆t2

2
((u

n+1/2
i )2 ∂

2φni
∂x2

+ u
n+1/2
i

∂u
n+1/2
i

∂x

∂φni
∂x

) +O(∆t3) (16)
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Figure 6: An illustration of our ALE advection in the world space for the point ~xobject that moves from ~xnworld (shown as the

red point) to ~xn+1
world (shown as the blue point) according to the grid motion. (Left) Forward advection. (Right) Backward

advection for SL-MacCormack.

By comparing Equation 14 and Equation 16, it can be seen that the difference between the numerical solution
and the exact solution is on the order of O(∆t3 + ∆t2∆x + ∆t∆x2). Therefore, the numerical solution
obtained by using time tn+1/2 velocities in SL-MacCormack advection is second order accurate. Through
similar derivations, it is easy to show that either using time tn or time tn+1 velocities, the dominant error
term is on the order of O(∆t2), leading to first order accuracy in time.

3.2. Chimera Advection Scheme

After filling ghost cells and overlapping regions as discussed in Section 2, we update each interior point
~xobject of each grid as follows. The standard first order accurate semi-Lagrangian update for a world space
location ~xworld (the blue dot in Figure 6 (Left)) on a stationary grid traces backwards along the characteristic
ray defined by the time tn velocity interpolated at ~xworld and interpolates an updated value at the lookup
location (the green triangle in Figure 6 (Left)) as follows:

φn+1
world(~xworld) = φnworld(~xworld −∆t~unworld(~xworld)) (17)

where φn+1
world, φnworld and ~unworld are parameterized by world space locations. In order to allow for grid motion

we replace the world space values with the appropriate object space values transformed into world space.
Since the grid is moving, we need to first determine where the point ~xobject will be at time tn+1. This
corresponds to ~xn+1

world as follows:

~xn+1
world = Rn+1~xobject + ~sn+1

where Rn+1 and ~sn+1 are the grid’s time tn+1 rotation and translation respectively. Since the velocity field
~un is stored in time tn object space we translate ~xn+1

world into time tn object space as ~xnew = (Rn)−1(~xn+1
world−

~sn). Unlike standard semi-Lagrangian advection, ~xnew is typically not a grid point and therefore one must
interpolate a velocity ~unfluid = ~un(~xnew). We then rotate this velocity back into world space giving the
characteristic velocity as follows:

~unworld = Rn~unfluid

Since φn is stored in object space, after computing the world space lookup location (the green triangle in
Figure 6 (Left)) of the characteristic ray we transform this location into time tn object space and interpolate
the final value. Thus we arrive at the updated semi-Lagrangian advection formula for moving grids as follows:

φn+1(~xobject) = φn((Rn)−1(~xn+1
world −∆t~uworld − ~sn))

= φn(~xobject −∆t(~unfluid − (Rn)−1~ugrid)) (18)

12



where φn+1
world(~xn+1

world) is equivalently replaced by φn+1(~xobject). Additionally, the effective velocity of the grid
location being updated is defined as ~ugrid = (~xn+1

world − ~xnworld)/∆t where xnworld = Rn~xobject + ~sn. Since we
want to apply the single grid advection code, we simplify this formula as follows:

φn+1(~xobject) = φn(~xobject −∆t~uneffective) (19)

where ~uneffective = ~unfluid− (Rn)−1~ugrid. Note that Equation 19 traces the same world space characteristics as
Equation 17 as shown in Figure 6 (Left).

When updating the velocities themselves, the scheme is a bit more complicated due to the rotation of grids’
basis vectors. We approach this by first computing a full velocity vector on each MAC grid face by applying
semi-Lagrangian advection to both of the coordinate directions at this face location and premultiplying
this advected velocity vector by (Rn+1)−1Rn to get the correct scalar components for the time tn+1 grid
coordinate directions as follows:

~ufull = (Rn+1)−1Rn~un(~xobject −∆t~uneffective) (20)

We then compute the final component value as un+1(~xobject) = ufull or vn+1(~xobject) = vfull depending upon
the component of the velocity field stored at the face at ~xobject.

The first step of SL-MacCormack advection is identical to the first order accurate semi-Lagrangian
advection and results in the scalar field φ̂n+1. In the second step, we fill the ghost cells of φ̂n+1 and then
advect these values backwards in time with the grid motion and fluid velocity reversed. The standard
backward advection step in MacCormack advection for a stationary grid using world space values is as
follows:

φ̂nworld(~xworld) = φ̂n+1
world(~xworld + ∆t~unworld(~xworld)) (21)

Following a similar derivation as that used to derive Equation 18, by substituting object space values trans-
formed to world space into Equation 21, we arrive at the backward advection step for moving grids as
follows:

φ̂n(~xobject) = φ̂n+1((Rn+1)−1(~xnworld + ∆tRn~ufluid,back − ~sn))

= φ̂n+1(~xobject + ∆t(Rn+1)−1(Rn~ufluid,back − ~ugrid)) (22)

where ~ufluid,back = ~un(~xobject). Note that conveniently, the fluid velocity at time tn is already defined at the
destination (which is a grid point) by standard averaging and does not need to be interpolated as it does
in the first semi-Lagrangian advection step. (Note that if we were using the fluid velocity at time tn+1 that
~ufluid,back would not be defined at the point ~xnworld and interpolation will be required similar to the treatment
of ~xnew in the semi-Lagrangian case.) Once again since we want to apply the single grid advection code, we
simplify Equation 22 as follows:

φ̂n(~xobject) = φ̂n+1(~xnobject + ∆t~ueffective,back) (23)

where ~ueffective,back = (Rn+1)−1(Rn~ufluid,back − ~ugrid) is the effective velocity. Note that Equation 23 traces
the same characteristics as Equation 21.

Once both the forward and backward advection steps have been performed, we again fill the ghost cells
of the backward advection results φ̂n and then use Equation 7 to compute the error estimate

E(~xobject) = (φ̂n(~xobject)− φn(~xobject))/2

at each grid point in the usual manner. However, note that the values of E(~xobject) correspond to time
tn world space locations of the grid points ~xobject, and the results from the first semi-Lagrangian step

φ̂n+1(~xobject) correspond to time tn+1 world space locations of ~xobject. Thus, in order to compute the correct
error correction at ~xn+1

world, one needs to interpolate the error E at the location ~xnew, i.e.

φn+1(~xobject) = φ̂n+1(~xobject)− E(~xnew) (24)
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When updating a velocity field, the backward advection step advects a full velocity vector for each face,
premultiplies the resulting full velocity vector by (Rn)−1Rn+1, and then takes the appropriate component
depending on the face being considered–just as it was done in the forward advection step. The error is then
computed for each face in their time tn world space locations, obtaining two different error fields, Eu and Ev.
The vector error at ~xnew is then calculated as ~E(~xnew) = (Eu(~xnew), Ev(~xnew))T via interpolation. Finally,

in order to obtain the scalar error correction for Equation 24, one premultiplies ~E(~xnew) by (Rn+1)−1Rn

and takes the appropriate component corresponding to the face direction being considered.
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Ωn+1
world

Ωnworld

Ω̂nworld,α

Ω̂nworld,αgrid

Ωn+1
world

Ωnworld

Ω̂n+1
world,α

Ω̂n+1
world,αgrid

Figure 7: Illustration of the relation between the time step size and ghost cells. (Left) Forward advection. (Right) Backward
advection for SL-MacCormack. The inner dashed boxes are the ghost domains bounding the grid motion—that is, the blue
solid box should be completely inside the inner dashed red box, and in SL-MacCormack advection the red solid box also needs
to be inside the inner blue dashed box. The outer dashed boxes are the ghost domains bounding the potential lookup points
containing the values to be advected.

3.3. Time Step Size and Ghost Cells

For a Cartesian grid we define the object space domain as Ωobject = [a, b]× [c, d] and the larger domain
which contains the ghost cells as Ωobject,αgrid

= [a−αgrid∆x, b+αgrid∆x]× [c−αgrid∆y, d+αgrid∆y] where
αgrid is the number of ghost cells. We then define the time tn and tn+1 world space domains for Ωobject

and Ωobject,αgrid
as Ωnworld, Ωnworld,αgrid

, Ωn+1
world and Ωn+1

world,αgrid
. When carrying out the semi-Lagrangian

advection as discussed in Section 3.2 one needs to interpolate ~unfluid at every ~xnew location, which means that
Ωn+1

world ⊆ Ωnworld,αgrid
so that a valid time tn velocity can be interpolated from the Ωnworld,αgrid

grid for every

degree of freedom in Ωn+1
world that needs to be advected. In fact, to obtain a valid interpolation stencil on a

staggered MAC grid one actually needs to shrink Ωobject,αgrid
by half a grid cell in every dimension obtaining

Ω̂object,αgrid
, and enforce that Ωn+1

world ⊆ Ω̂nworld,αgrid
, see Figure 7 (Left).

Given a prescribed grid motion and a time step ∆t, one could calculate the number of ghost cells αgrid

required to enforce this subset condition. However, this requires either reallocating ghost cells each time step
which leads to cache coherency issues and high communication costs in MPI, or preallocating a sufficiently
large number of ghost cells and using a subset of them which also poses issues due to inordinate memory
allocation. Therefore, we instead fix the number of ghost cells and limit the time step ∆t. Note that this
strategy rules out the ability of grids to discontinuously change in position by an arbitrarily large distance,
because in that case a grid could move by a distance larger than the ghost region even if ∆t is arbitrarily
small. Therefore we require grids to have a bounded velocity. We note that in this case while a smaller ∆t
still does not necessarily lead to less grid motion (e.g. a grid in one-dimension with position x(t) = sin(t)
has a larger displacement at t = π/2 than t = π), that a bounded velocity does guarantee that a grids
displacement over a time step tends to zero as ∆t does–guaranteeing that a ∆t always exists such that
Ωn+1

world ⊆ Ωnworld,αgrid
.

It is inexpensive to check whether a rectangular domain lies within another rectangular domain, since
it is only necessary to check if the four corners of the first domain lie within the second domain. This is a
very light O(1) computation compared to the O(n2) number of grid points on which advection is performed.
Therefore, in order to maximize the allowable time step, ∆t should be chosen as large as possible, implying
that at least one of the four corners of Ωn+1

world would lie exactly on the boundary of Ω̂nworld,αgrid
. This minimizes

the total computation time by minimizing the number of time steps taken. Although various strategies exist
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to linearize and approximate ∆t, a simple bisection procedure is also sufficient. This process is carried out
for each grid and the minimum ∆t over all grids taken as ∆tgrid. Note that because grids can move further in
shorter time steps, using ∆tgrid for every grid could result in one of the grids moving outside of its respective

Ω̂nworld,αgrid
domain. Therefore, this condition needs to be checked at ∆tgrid for all grids, and if invalid for

any grid one can recompute the bisection for that grid in the interval (0,∆tgrid] and then clamp all grids to
this new value, repeating the process—which is guaranteed to converge as stated above.

Next, for each degree of freedom and corresponding location ~xnew, one traces back along the fluid char-
acteristic to interpolate a value at a point in object space ~xlookup = ~xobject −∆t~ueffective. We therefore use

the final number of ghost cells α = αgrid + αfluid, and its corresponding domain, Ω̂object,α, which is reduced
by half a grid cell in every spatial dimension. The extra αfluid ghost cells allow for tracing the fluid velocity
characteristic backwards to find time tn values of the advected quantity which lie outside of Ω̂nworld,αgrid

.

Note that values of ~unfluid will be interpolated at the degrees of freedom inside Ωn+1
world which are contained

within Ω̂nworld,αgrid
. Therefore for every fluid velocity in Ω̂nworld,αgrid

(which includes ghost cell velocities) we

need to ensure that the time step is small enough such that the world space position of ~xlookup does not lie

outside Ω̂nworld,α. We satisfy this with the following CFL condition

∆tfluid ≤ αfluid
min(∆x,∆y)

max|~unfluid|
(25)

for every point ~xnew in Ω̂nworld,αgrid
. As we use bilinear interpolation to compute ~unfluid at these points, we

can more conveniently apply Equation 25 instead for every grid point of Ω̂nworld,αgrid
.

Although we have allowed for two regions of ghost cells defined by αgrid and αfluid to account for both the
motion of the grid and fluid separately, it is not sufficient to take the minimum of ∆tgrid and ∆tfluid, because
as mentioned above, shrinking ∆t may lead to larger grid motion. Therefore we first determine ∆tfluid and
then compute a valid ∆tgrid within the interval (0,∆tfluid].

In the case of SL-MacCormack advection, the forward advection step proceeds as in the first order accurate
semi-Lagrangian case, and then for backward advection, we define the ghost cell domains Ω̂n+1

world,αgrid
and

Ω̂n+1
world,α similar to as was done for forward advection (see Figure 7 Right). While values of ~unfluid,back

do not need to be interpolated as discussed in Section 3.2, it is necessary to ensure that the destination
of the characteristic path, the world space position of ~xlookup,back = ~xobject − ∆t~ueffective,back, lies inside

Ω̂n+1
world,α. Since we are using the time tn velocities ~unfluid,back for backward advection, ∆tfluid is sufficient

to guarantee this as long as Ωnworld lies within Ω̂n+1
world,αgrid

. It turns out that the ∆tgrid which guarantees

that Ωn+1
world ⊆ Ω̂nworld,αgrid

does not also necessarily guarantee that Ωnworld ⊆ Ω̂n+1
world,αgrid

. Therefore after

determining ∆tfluid, we use our search algorithm to find a ∆tgrid in the interval (0,∆tfluid] which guarantees

both Ωn+1
world ⊆ Ω̂nworld,αgrid

and Ωnworld ⊆ Ω̂n+1
world,αgrid

for all grids (before taking a time step).

3.4. Numerical Results

In order to examine the convergence of our Chimera advection schemes we have implemented three
convergence tests which consider the same grid configuration applied to three different velocity fields. The
domain consists of a coarse background grid that has no rotation or translation, and a fine grid which
is rotating and translating inside the coarse grid’s domain. The world space domain of the coarse grid
is [−1, 1] × [−1, 1], while the fine grid’s object space domain is [−.25, .45] × [−.25, .45]. The fine grid is
kinematically driven with the position ~s(t) = (−.3, .2) cos( t

2π ), and orientation θ(t) = t
6π–that is, the fine

grid spins and translates along a straight line from top left to bottom right, see Figure 8. The cell size of the
fine grid is half that of the coarse grid, doubling the resolution of the area covered by the fine grid. In each
of the tests we set αgrid = 2 and αfluid = 1, and the number of ghost cells equal to 3. The initial density field
in each test is the bump function defined in Equation 9 with different initial positions and radii specified
below.

The first test advects the density field through a constant uniform velocity field. Snapshots of the
simulation are given in Figure 9. The initial position of the bump is (−.75, .4) and the radius is r = .2.
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Figure 8: Illustration of motion of the grids. The background grid has no rotation or translation, while the fine grid spins and
translates along a straight line inside the domain of the background grid.

The uniform velocity field is ~u = (
√

3/4,−1/4). The results in Figure 10 show that both the ALE semi-
Lagrangian and ALE SL-MacCormack methods converge to the analytic solution. Note that in Figure 10,
the plateau regions where the errors grow more slowly correspond to the times when the density field is
primarily in the fine grid. The orders of accuracy for both methods are shown in Table 1.

The second test advects the density field through a constant single vortex velocity field. The initial
position of the bump is (0, .5) and the radius is r = .3. The velocity field function is given by ~u(x, y) =
12π
25 (−y, x). The L1 norm errors of different resolution simulations are plotted in Figure 11, and the orders

of accurary are calculated when the field is rotated exactly one cycle, see Table 2.
The third test we ran was the time-varying single vortex example as used in the single grid test from

Section 3.1. To calculate the errors and the orders of accuracy, the results from the 16384-point-resolution
simulation performed on a single grid are used in this test as the ground truth, allowing us to show that
the single grid simulations and the two-moving-grid simulations converge to the same solution. Figure 13
shows that the ALE SL-MacCormack method achieves second order accuracy using time tn+1/2 velocities for
advection, while the ALE semi-Lagrangian method is near first order accurate. The L1 norm error plot in
Figure 12 shows that in tests using the ALE SL-MacCormack method the errors start to decrease at t = 4.
This is because the errors of each time step in numerical simulations are signed errors, which may either
cancel or accumulate when summed up in time. In this test, the velocity field is antisymmetric with respect
with t = 4, making some error terms in SL-MacCormack advection also antisymmetric and being able to
cancel. However, the errors of tests using the semi-Lagrangian method continues to increase in time after
t = 4 because the semi-Lagrangian advection operator is not symmetric either in space or in time.
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Figure 9: Snapshots of a simulation that advects a circular bump in a constant uniform velocity field. The circles shown in the
figure are contours of the bump function. (Left) The snapshot at t = 0. (Middle) The snapshot at t = 1. (Right) The snapshot
at t = 3.

SL (time=3.0) SL-MC (time=3.0)
Number of Points L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order
128 5.90× 10−3 – 4.26× 10−1 – 1.96× 10−3 – 1.22× 10−1 –
256 3.58× 10−3 0.72 2.50× 10−1 0.77 5.88× 10−4 1.74 4.53× 10−2 1.43
512 2.00× 10−3 0.84 1.32× 10−1 0.92 1.61× 10−4 1.87 1.88× 10−2 1.27
1024 1.09× 10−3 0.87 6.90× 10−2 0.94 4.04× 10−5 1.99 6.45× 10−3 1.54
2048 5.74× 10−4 0.93 4.07× 10−2 0.76 9.72× 10−6 2.05 1.86× 10−3 1.79

Table 1: The order of accuracy of our ALE semi-Lagrangian (SL) and SL-MacCormack (SL-MC) methods of the constant
uniform velocity test.

SL SL-MC
Number of Points L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order
128 1.63× 10−2 – 5.81× 10−1 – 4.16× 10−3 – 1.40× 10−1 –
256 1.08× 10−2 0.59 3.91× 10−1 0.57 1.24× 10−3 1.74 5.58× 10−2 1.32
512 6.58× 10−3 0.72 2.29× 10−1 0.77 3.30× 10−4 1.92 1.86× 10−2 1.59
1024 3.77× 10−3 0.80 1.24× 10−1 0.89 8.39× 10−5 1.98 5.02× 10−3 1.89
2048 2.06× 10−3 0.87 6.40× 10−2 0.95 2.04× 10−5 2.04 1.42× 10−3 1.82

Table 2: The order of accuracy of our ALE semi-Lagrangian (SL) and SL-MacCormack (SL-MC) methods of the constant single
vortex test when the bump has been rotated for one cycle.
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Figure 10: The L1 norm error of the numerical solutions as a function of time in the constant uniform velocity test. (Top) The
results of our ALE semi-Lagrangian method. (Bottom) The results of our ALE SL-MacCormack method.
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Figure 11: The L1 norm errors of the numerical solutions as a function of time in the constant single vortex test. (Top) The
results of our ALE semi-Lagrangian method. (Bottom) The results of our ALE SL-MacCormack method.
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Figure 12: The L1 norm error of the numerical solutions as a function of time in the time-varying single vortex test. (Top) The
results of our ALE semi-Lagrangian method. (Bottom) The results of our ALE SL-MacCormack method.
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Figure 13: The order of accuracy of the time-varying single vortex test.(Top) The order of accuracy based on L1 norm of errors.
(Bottom) The order of accuracy based on L∞ norm of the errors.
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4. Poisson Equation

∂Ωb

∂Ωr

Figure 14: For fully overlapping grids one must omit a number of grid cells in the interior in order to provide boundaries for
the application of boundary conditions, in this case creating an interior boundary, ∂Ωb, on the blue grid to receive information
from the red grid. For partially overlapping grids one may omit cells for the sake of efficiency, but it is not always necessary in
order to create a boundary on which one can prescribe coupling as in the case for fully overlapping grids. The black boundaries
of both grids, ∂Ωb and ∂Ωr, are locations on which Neumann boundary conditions would be applied and the dotted cells of
both grids are locations on which Dirichlet boundary conditions would be applied.

With an eye towards incompressible flow presented in section 6, we first consider the Poisson equation:

∇ · β(~x)∇φ(~x) = f(~x), ~x ∈ Ω (26)

φ(~x) = g(~x), ~x ∈ ∂ΩD (27)

~n(~x) · ∇φ(~x) = h(~x), ~x ∈ ∂ΩN (28)

where ~n is the outward pointing normal to the boundary, Ω is the computational domain, and ∂ΩD and
∂ΩN are the portions of the boundary on which Dirichlet and Neumann boundary conditions are enforced,
respectively. For simplicity of presentation, we take β equal to one noting that nothing about our method
prevents it from being straightforward to extend to a variable β.

We begin with an overview of the general approach used for solving Poisson equations on overlapping
grids. Both for the sake of computational efficiency and to facilitate the application of boundary conditions,
one typically removes a number of cells in the overlapping region betweens grids as shown in Figure 14.
Although Figure 14 shows one grid completely enclosed within another, we note that cells are still removed
when grids are only partially overlapped. In that case it is primarily performed for efficiency. When deciding
which cells to remove, it is necessary to allow for a large enough overlap such that valid interpolation stencils
exist for nodes on which the boundary conditions are specified. However, it is also important to minimize
this overlap in order to prevent the solutions within these overlapping regions from drifting apart. See [18]
for further discussion of these aspects of grid generation.

In order to enforce either Dirichlet or Neumann boundary conditions along intergrid boundaries, operators
which compute values for ghost nodes by interpolating from non-ghost nodes on other overlapping grids are
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Figure 15: In one dimension, two grids overlap by 3 cells with the cell centered solution variables φ11, φ12 and φ13 on the grid 1
and φ21, φ22 and φ23 on the grid 2. In this case φ13 and φ21 are ghost cells where Dirichlet boundary conditions would be applied.
The bold face lines between φ12 and φ13, and φ21 and φ22 represent where Neumann boundary conditions would be applied.

substituted into the equations. With these substitutions we arrive at the following discretized versions of
Equations 26-28 for two overlapping grids:

D1 (G1φ1 + G1gJ1,2φ2 + H1,2G2φ2) = f1 −D1

(
G1dφ1d +

∂φ1n

∂~n

)
(29)

D2 (G2φ2 + G2gJ2,1φ1 + H2,1G1φ1) = f2 −D2

(
G2dφ2d +

∂φ2n

∂~n

)
(30)

where φ1 and φ2 are the discrete values of φ located at non-ghost cells on grids 1 and 2 respectively, f1
and f2 are the discrete values of the right hand side of Equation 26, ∂φ1n

∂~n and ∂φ2n

∂~n are the Neumann
boundary conditions on grids 1 and 2 respectively as specified in Equation 28, and φ1d and φ2d are the
Dirichlet conditions on grids 1 and 2 respectively as specified in Equation 27. D1 and D2 are the divergence
operators, G1 and G2 are the terms from the gradient operators corresponding to non-ghost cells, G1g and
G2g are the terms from the gradient operator corresponding to ghost cells, and G1d and G2d are the terms
from the gradient operator corresponding to the Dirichlet boundary conditions on the computational domain
as specified in Equation 27. J1,2 interpolates values of φ from non-ghost cells on grid 2 to ghost cells on grid
1, and similarly J2,1 interpolates values of φ from non-ghost cells on grid 1 to ghost cells on grid 2. H1,2

interpolates discretized values of the gradient of φ2 from non-ghost faces on grid 2 to ghost faces on grid
1, and similarly H2,1 interpolates discretized values of the gradient of φ1 from non-ghost faces on grid 1 to
ghost faces on grid 2.

In general D1, D2, G1, G2, G1d and G2d are defined using the same stencils as would be used for
single grids (e.g. using the composite finite difference discretization and deformation Jacobian in the case of
curvilinear grids). The interpolation operators J1,2, J2,1, H1,2 and H2,1 are dependent upon the desired order
of the scheme (e.g. quadratic operators for second order accuracy and tensor product Lagrange interpolants
more generally. See [18].). We note that if one did not allow for a large enough overlap between the grids,
additional terms would appear in Equations 29 and 30 where values from one grid would be interpolated
to another grid as boundary conditions, which would then in turn be interpolated back to the original
grid as additional terms in the former grid’s own boundary conditions. This circular dependency is further
discussed in [18] in which they state one could either perform an additional implicit solve to compute the
true interpolation weights as a preprocessing step or include the additional implicit interpolation equations
into the full system. While it is possible to support a large enough overlap such that this is not necessary
[18] suggests that in the case of coarse grids this implicit interpolation is advantageous by allowing a minimal
overlap.

While most methods use only Dirichlet conditions to couple grids (i.e. H1,2 = 0 and H2,1 = 0), if instead
one chooses to enforce compatibility between the solutions on different grids using Neumann boundary
conditions along intergrid boundaries, the system can be singular. To illustrate this we consider the example
of two grids as shown in Figure 15. The Laplacians (before cutting out the cells containing φ1

3 and φ2
1) for

the cells containing samples φ1
2 and φ2

2 are
∂2φ1

2

∂x2 = (φ1
3 − 2φ1

2 + φ1
1)/∆x2 and

∂2φ2
2

∂x2 = (φ2
3 − 2φ2

2 + φ2
1)/∆x2

respectively. Enforcing a Neumann boundary condition of
∂φ1

2.5

∂x = (φ2
3−φ2

2)/∆x on grid 1, gives the modified
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Laplacian
∂2φ1

2

∂x2 = (φ2
3−φ2

2−φ1
2+φ1

1)/∆x2. Enforcing a Neumann boundary condition of
∂φ2

1.5

∂x = (φ1
2−φ1

1)/∆x

on grid 2, gives the modified Laplacian
∂2φ2

2

∂x2 = (φ2
3−φ2

2−φ1
2 +φ1

1)/∆x2. Thus,
∂2φ1

2

∂x2 =
∂2φ2

2

∂x2 and consequently
the resulting coupled system is singular. Note that while more complex multidimensional cases will not always
be exactly singular due to approximations when interpolating, the system still asymptotes towards singularity
as the grid is refined and thus will still be poorly conditioned. Although the rank 1 nullspace admitted by
solid wall boundary conditions in standard incompressible flow has long been addressed by projecting out
the nullspace, the complexity of the nullspace resulting from the interpolation makes it difficult to compute.
This singularity is also avoided by using mixed boundary conditions where the boundary condition at one
or more locations is replaced by a Dirichlet coupling condition.

In general Equations 29 and 30 do not yield a symmetric system due to the fact that the intergrid boundary
conditions applied to the first grid are not coincident with those applied to the second grid. Similar issues
arise in fluid-structure interaction problems where the fluid-structure boundaries are non-conforming. One
common approach to solving these problems is to couple the solid and fluid velocities together at fluid faces
by using a Lagrange multiplier to conservatively force continuity between the fluid and structures velocities
across the boundary, see e.g. [73, 72]. One could follow this strategy by modifying Equations 29 and 30 to
include similar forcing terms in order to enforce matching values of ∇φ at boundaries. However, while this
will produce a symmetric system, the same nullspace issues discussed above for the case of using Neumann
boundary conditions will apply here.

A common approach to solving Equations 29 and 30 is to use a block Gauss-Seidel outer iteration such
as follows:

D1G1φ
k+1
1 = f1 −D1

(
G1gJ1,2φ

k
2 + H1,2G2φ

k
2 + G1dφ1d +

∂φ1n

∂~n

)
(31)

D2G2φ
k+1
2 = f2 −D2

(
G2gJ2,1φ

k+1
1 + H2,1G1φ

k+1
1 + G2dφ2d +

∂φ2n

∂~n

)
(32)

where the superscript on φ indicates the Gauss-Seidel iterate. This scheme allows the diagonal block as-
sociated with each grid to be solved independently of the other grids with the single grid solver of the
implementer’s choice (i.e. Equations 31 and 32 would be solved in an alternating fashion until a convergence
criterion was reached). However, this scheme, also known as a Schwartz alternating method or Partitioned
method, suffers from significant convergence issues. While for some cases there exists proofs showing that
the method allows the overall scheme to converge to the solution of the original problem, the method can
often diverge. In fact, when enforcing compatibility between the solution on different grids using Neumann
boundary conditions, in addition to the diagonal blocks themselves being singular, the right hand side can
even be incompatible.

Some of the more successful approaches have directly solved Equations 29 and 30 monolithically. Multi-
grid methods have been shown as extremely effective (see e.g. [34, 33]) by exploiting the fact that the com-
ponent grids are themselves logically rectangular. This allows for straighforward and accurate coarsening
strategies by simultaneously coarsening each grid by the same factor and then computing the corresponding
monolithic coupled system for the new coarse discretizations. Krylov methods (see e.g. [40]) have also been
successful using either biCG-stab or GMRES with an incomplete LU preconditioner.

In an attempt to build a symmetric coupling between the grids, we first consider a cut cell approach
as shown in Figure 16. The degrees of freedom remain at the cell centers of both grids and each degree
of freedom corresponds to either a full or partially cut cell. A finite volume approach can be used to
compute the volume weighted discrete divergence for each cell by computing the net flux across all incident
faces. However, computing the gradient is less obvious. In order to produce a symmetric Laplacian, the
gradient operator for each face must include terms only for incident cells as illustrated in Figure 16 (Right).
Unfortunately, regardless of exactly how weights are chosen in these stencils, for most grid configurations,
discretization errors appear which do not vanish in the L∞ norm under grid refinement (see, for example [4]
and [67]). This is due to the fact that the component of the gradient computed at each face is not orthogonal
to the face and does not tend towards orthogonality upon refinement. This is particularly evident at sharp
corners along the intergrid boundary. Authors such as [83] have approached this issue by using deferred
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Figure 16: In this two grid example, we cut overlapped cells on the blue coarse grid by removing parts of these cells which are
covered by finer red grid cells. The blue dots are the locations of φ samples on the blue grid. The red dots are the locations
of φ samples on the fine red grid. The dashed lines indicate the direction of the components of the gradient across faces along
the intergrid boundaries. Generally the direction of these components are far from orthogonal to their respective faces. The
components of the gradients incident to the blue φ sample contained within the red grid (in the blown up portion of the figure
to the right) are even inverted.

correction methods which attempt to iteratively improve the error by adding the difference in the gradient
components using a gradient computed in the previous iteration. While this can produce accurate results for
cases where the angle between the gradient and face normal is small enough, convergence issues can persist
in more skewed cases. Furthermore, the additional cost of requiring multiple outer iterations of the entire
system makes the method computationally infeasible. The main idea behind our coupling is that rather than
trying to change effective φ sample locations by constructing complicated gradient stencils, one could instead
modify the cell geometry while fixing φ sample locations in order to produce accurate centered difference φ
derivatives along grid boundaries.

4.1. Voronoi Diagram Discretization

Inspired by [78] and [12], we take the approach of using a Voronoi diagram to compute the coupling
terms between the discretizations on each grid, as illustrated in Figure 17. By definition each face in a
Voronoi diagram is both orthogonal to and bisects the line segment between the centers of the cells incident
to the face. We note that because Cartesian grids are already Voronoi diagrams it is only necessary to mesh
along intergrid boundaries. While this approach deviates from traditional Chimera grid schemes which do
not apply any meshing in order to couple together overlapping grids, we stress that typically one is already
spending considerable effort constructing and maintaining body-fitted grids with curvilinear coordinates, so
it is reasonble to perform a small amount of additional meshing on a lower-dimensional manifold in order to
produce a well conditioned symmetric positive definite system which allows for the use of simple and stable
solvers such as preconditioned conjugate gradient. We do note that this lower-dimensional meshing must
occur every time step if the grids are moving. However, if one is using more complicated curvilinear grids,
one must also compute the inverse mappings for interpolation locations each time step.

Since we do not exchange information between grids through the use of overlapping regions, we do not
require our grids to overlap by a certain number of cells. Instead, we cut out enough cells in order to
explicitly prevent the remaining parts of each grid from overlapping as illustrated in Figure 18 (a). It is also
important to not remove too many cells and create large gaps between the grids which can also introduce
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Figure 17: The composite grid resulting from our proposed method for coupling multiple grids by generating a Voronoi mesh
along their boundaries. The dots are the cell centers of boundary cells that are incident to voronoi faces - note every dot
corresponds to a degree of freedom originally from either the red or blue grid as indicated by their color.

significant numerical error in the resulting discretization. We proceed by removing any coarse cells which
contain the cell center of a finer cell, as well any coarse cells whose cell center is contained within a finer
cell. It is important to emphasize that when checking a coarse cell against another finer cell, we first check
whether the finer cell itself is not cut out by an even finer cell. Although this fine to coarse strategy favors
finer grid cells, any other reasonable strategy could be used with proper modifications. For example, in the
case when two solid bodies (each with their own grid) are in close proximity, it may be desirable to prefer
cells based on their distance from their respective bodies.

We directly compute the Voronoi diagram for all remaining cell centers as shown in Figure 18, noting
that for all the interior cells of each grid the Cartesian geometry already is a Voronoi diagram - and thus
we only need to compute the geometry for boundary cells. For each boundary cell we first find all nearby
cell centers within some prescribed distance τ . Then considering each nearby cell center one at a time we
construct a candidate plane for the polygonal face between these two cell centers, equidistant between these
two cell centers. For every other neighboring cell center within the distance τ , this candidate plane is clipped
to a smaller polygonal area by the candidate planes formed between the original cell center and each of the
other nearby cell centers. Note that the final plane could be an empty set in which case the two cells values
do not interact and are not directly coupled in the discretization. Note also that while building a Voronoi
mesh can sometimes require sensitive calculations, this sensitivity only applies to arbitrary point sets and is
not a concern for the highly structured samples in our application.

For the sake of exposition, we assume that our grids have equal edge length cube cells. Then, given our
prescribed algorithm for deleting cell centers, the maximum distance to a remaining cell center from a point
randomly chosen within a certain grid is |∆~x|. To see this, first note that if the randomly chosen point lies
within a cell that is not deleted, it is trivially true. Otherwise, if that cell was deleted, it either contains a
cell center from a finer grid and again it is trivially true, or a finer cell contains the cell center of the original
grid and it is again true. In this case, the distance from the randomly chosen point to the deleted cell’s
center is at most |∆~x|/2 and the distance from the that cell’s center to the finer grid cell center is at most
|∆~x|/2, thus proving the assertion. As a result, for any cell center more than a distance of |∆~x| within a
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Figure 18: Our procedure for generating the Voronoi face between cell i and its first neighbor cell 1. (a) The remaining
Cartesian cell geometry after cutting out overlapping cells on the grids is drawn in blue for the coarse grid and red for the fine
grid. The black dots indicate non-removed cells along the intergrid boundary with only partial geometry remaining after the
cell removing procedure. The black line indicates the initial unclipped face between cells i and 1 and the dotted line indicates
the orthogonal line between those cells’ centers. (b)-(g) The face between cells i and 1 is sequentially clipped by the plane (the
dashed lines) between cell i and its neighbor cells 2 to 7. The black line shows resulting face between cells 1 and i after each
clipping operation. (h) Shows the final face in context with the complete Voronoi diagram (shown in green).

grid’s domain, each point within the corresponding Voronoi cell must be no more than |∆~x| from the cell
center. Furthermore, each face incident to the cell must be no further than |∆~x| from the cell center. Since
faces are equidistant to their incident cell centers, the original cell center must be less than a distance of
2|∆~x| away from another cell’s center in order for the two cells to share a face. Thus in order to compute τ
for a given cell, we find the finest grid whose domain, shrunken by the grid’s corresponding |∆~x|, contains
the cell center and set τ = 2|∆~x|. If no grid is found we use |∆~x| from the coarsest grid and include ghost
cells which lie outside the computational domain when creating and clipping Voronoi faces.

Once we have computed the Voronoi mesh geometry we proceed to discretize Equations 26-28 using a
finite volume approach as follows. We begin by integrating Equation 26 over the control volume, for a cell i
as follows: ∫

Ωi

∇ · ∇φ(~x)d~x =

∫
Ωi

f(~x)d~x

where Ωi is the control volume of cell i. We then invoke the divergence theorem to change the volume
integral into a surface integral as follows:∫

∂Ωi

~n(~x) · ∇φ(~x)d~x =

∫
Ωi

f(~x)d~x

where ∂Ωi is the surface of the control volume of cell i, and ~n is the outward pointing normal on the surface
of cell i. We subsequently discretize these equations by approximating the integral on the left hand side by
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summing over the area weighted normal derivatives at face centers and by approximating the right hand side
integral as the cell volume times f(~x) evaluated at the cell center as follows.∑

j∈Ni

Ai,j(~ni,j · ∇φi,j) = Vifi (33)

where Ni contains the indices of the cells adjacent to cell i, Ai,j is the area of the face between cells i and
j and Vi is the volume of cell i. ~ni,j = (~xj − ~xi)/|~xj − ~xi| is the normal pointing from cell i to cell j
where ~xi and ~xj are the centers of cells i and j respectively. ∇φi,j is the gradient of φ at the center of the
face between cells i and j, and fi = f(~xi) is the value of the right hand side of Equation 26 at the center
of cell i. Note that VcD is represented as a single assembled matrix which contains the volume weighted
divergence discretization for each cell. We then discretize the normal derivatives of φ using second order
accurate centered finite differencing as follows:

~ni,j · ∇φi,j = (φj − φi)/|~xj − ~xi| (34)

where φi and φj are the values of φ located at the centers of cells i and j respectively. Note that G is
the assembled matrix containing the gradient discretization for each face. Since we can view our Voronoi
discretization as a global mesh with regular connectivity we can formulate our final system as a single set of
equations over the entire mesh using our definitions for the gradient and divergence operators in Equations 33
and 34. After taking into account the boundary conditions and rearranging terms, we arrive at the following
symmetric positive definite system with orthogonal gradient components computed at each face:

−VcDGφ = −Vcf + VcD

(
Gdφd +

∂φn
∂~n

)
(35)

where φ contains the discrete values of φ at non-removed cells over the entire Chimera grid. Vc is a matrix
with the Voronoi cell volumes as entries along the diagonal. Note that Equation 35 is the volume weighted
form of Equation 26 in order to maintain symmetry. In order to solve Equation 35 we use incomplete
Cholesky preconditioned conjugate gradient.
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Figure 19: The domains of the grids used in our Poisson equation tests in two spatial dimensions.

4.2. Numerical Results

In order to examine the convergence of our spatial discretization we have implemented several convergence
tests in both two and three spatial dimensions. In all tests we used Dirichlet boundary conditions set along
the exterior computational boundary.

Object space domain ∆x ~s θ
1 [−1, 1]× [−1, 1] 2/n (0, 0) 0
2 [−.4, .4]× [−.4, .4] .8/n (−.15, .1) π/6
3 [−.3, .3]× [−.2, .2] .4/n (.1,−.3) −π/12
4 [−.15, .15]× [−.15, .15] .15/n (0,−.1) π/24

Table 3: Domains, cell sizes, positions (~s) and orientations (θ) of the four grids used in our Poisson equation tests in two spatial
dimensions. n indicates the number of cells in each dimension on the coarsest grid. Note that all cells on all grids are square,
the 3rd grid is rectangular with more square grid cells in one direction, and the 4th grid is extra fine where the numerator is
correctly listed as .15 in the table. See also Figure 19.

In two spatial dimensions we use the domain Ω = [−1, 1]× [−1, 1] for all tests which is discretized by four
overlapping grids as listed in Table 3 and shown in Figure 19. Table 4 gives the errors and orders of accuracy
for φ(x, y) = sin(πx)sin(πy). In three spatial dimensions we use the domain Ω = [−1, 1]× [−1, 1]× [−1, 1]
for all tests which is discretized by four overlapping grids as listed in Table 5 and shown in Figure 20. Table
6 gives the errors and orders of accuracy for φ(x, y, z) = sin(πx)sin(πy)sin(πz).

4.2.1. Matrix Conditioning

In order to examine the conditioning of the matrix produced by this spatial discretization, we have
compared the number of conjugate gradient (CG) and incomplete Cholesky preconditioned conjugate gradient
(ICPCG) iterations required to satisfy |V−1

c r|∞ < 10−8 where r is the current residual of Equation 35. Note
that we multiply the residual by V−1

c since in this test we are interested in the residual of the unweighted
discretized Poisson equation. We note that each iteration of ICPCG takes roughly 2.5 times longer than an
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n L1 Error Order L∞ Error Order
32 1.88× 10−3 – 6.25× 10−3 –
64 4.38× 10−4 2.10 1.72× 10−3 1.93
128 1.08× 10−4 2.02 4.33× 10−4 1.99
256 2.68× 10−5 2.01 1.16× 10−4 1.90
512 6.67× 10−6 2.01 2.73× 10−5 2.09

Table 4: Convergence results for solving a Poisson equation with analytic solution φ(x, y) = sin(πx) sin(πy).

Object space domain ∆x ~s θ,~a
1 [−1, 1]× [−1, 1]× [−1, 1] 2/n (0, 0, 0) 0, (0, 0, 0)

2 [−.4, .4]× [−.4, .4]× [−.4, .4] 0.8/n (−.15, .1, 0) π/4, (1/
√

6, 2/
√

6, 1/
√

6)

3 [−.45, .45]× [−.3, .3]× [−.3, .3] 0.6/n (.1,−.3, 0) π/10, (−1/
√

11, 3/
√

11,−1/
√

11)

4 [−.15, .15]× [−.15, .15]× [−.15, .15] 0.3/n (0,−.1, 0) π/2, (4/
√

21,−1/
√

21, 2/
√

21)

Table 5: Domains, cell sizes, positions and orientations (angle θ, axis ~a) of the four grids used in our Poisson tests in three
spatial dimensions. n indicates the number of cells in each dimension on the coarsest grid.

iteration of CG due to the backwards and forwards substitutions performed when applying the preconditioner.
The iteration counts for both two- and three-dimensional examples are shown in Table 7. Notice that the
preconditioner works, significantly reducing the iteration counts, and that even with the added cost of
applying the preconditioner there is a large computational saving.

5. Heat Equation

We next modify our Poisson solver to solve the following heat equation:

∂φ

∂t
= ∇ · β(~x)∇φ(~x), ~x ∈ Ω (36)

φ(~x) = g(~x, t), ~x ∈ ∂ΩD (37)

~n(~x) · ∇φ(~x) = h(~x, t), ~x ∈ ∂ΩN (38)

where β is the diffusion coefficient. We first solve Equations 36-38 for values of φ located at cell centers by
modifying Equation 35 from Section 4.1 to implement a backward Euler time integration scheme by solving
the following symmetric positive definite system:

(Vc −∆tβVcDG)φn+1 = Vcφ
n + ∆tβVcD

(
Gdφ

n+1
d +

∂φn+1
n

∂~n

)
(39)

where φn and φn+1 are the discrete φ values at non-removed cells at times tn and tn+1 respectively. We
assume β to be spatially constant for the sake of exposition. Note that Equation 39 is the volume weighted
form of Equation 36 in order to maintain symmetry. For second order accuracy we use a trapezoid rule time
integration scheme by solving the following equation:(

Vc −
∆t

2
βVcDG

)
φn+1 =

(
Vc +

∆t

2
βVcDG

)
φn + ∆tβVcD

(
Gd

φn+1
d + φnd

2
+

∂φn+1
n

∂~n +
∂φn

n

∂~n

2

)
(40)

In two spatial dimensions we use the domain Ω = [−1, 1]× [−1, 1] which is discretized by two overlapping
grids as listed in Table 8 and shown in Figure 21. In all of our heat equation tests we set β = .01 and
specify Dirichlet boundary conditions along the exterior computational boundary. In each test we integrate
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Figure 20: The domains of the grids used in our Poisson equation tests in three spatial dimensions.

the solution from time t = 0 to t = 1 using the time step ∆t ≈ 1/n and compute the errors at time t = 1.
Note that for now we only consider case where the second grid is stationary and remains at its initial time
t = 0 location. We first consider the exact solution as given by φ(x, y, t) = e−.02π2tsin(πx)sin(πy). Tables
9 and 10 show the results for backward euler and trapezoid rule time integration on a stationary grid.

In order to treat moving grids we remap φ values at the beginning each of step using the semi-Lagrangian
advection schemes from Section 3.2 applied with a zero velocity field to calculate time tn values of φ on the
grids in their time tn+1 locations. In order to apply the semi-Lagrangian schemes we first need to define φ at
every location on every grid in order to compute updated values for removed cells not included in the implicit
solve. This requires interpolating from the Voronoi degrees of freedom back to the Cartesian grid degrees of
freedom that were removed when constructing the Voronoi mesh. We accomplish this by interpolating over
a modified version of the Delaunay mesh dual of the Voronoi mesh as illustrated in Figure 22. If a removed
degree of freedom lies within the support of non-removed degrees of freedom from one of the Cartesian grids,
we simply use multilinear interpolation. Otherwise, the interpolation is slightly more intricate and needs
to be accomplished using the aggregate Voronoi mesh, in which case we interpolate values of φ by using
barycentric coordinates to interpolate across the tetrahedra belonging to the Delaunay mesh dual of the
Voronoi diagram. We note that since we do not have the exact connectivity of our Voronoi mesh, we allow
overlapping tetrahedra in (near) degenerate cases in order to guarantee that valid interpolation stencils exist
for all interpolation locations.

When using the first order accurate semi-Lagrangian Advection scheme to remap values we found that
the overall scheme degenerates to first order even when using the second order accurate version of the method
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n L1 Error Order L∞ Error Order
16 4.36× 10−3 – 2.14× 10−2 –
32 1.00× 10−3 2.12 6.21× 10−3 1.78
64 2.39× 10−4 2.07 1.70× 10−3 1.87
128 5.82× 10−5 2.04 5.05× 10−4 1.75
256 1.44× 10−5 2.02 1.44× 10−4 1.81

Table 6: Convergence results for solving a Poisson equation with analytic solution φ(x, y, z) = sin(πx)sin(πy)sin(πz).

φ(x, y) = sin(πx) sin(πy) φ(x, y, z) = sin(πx)sin(πy)sin(πz)
n CG ICPCG CG ICPCG
16 511 37 235 33
32 1955 61 702 53
64 6323 110 1833 99
128 22715 328 6702 225
256 96511 795 24677 492
512 385218 4028 - -

Table 7: The number of iterations taken by CG and ICPCG in order to converge for successively finer resolutions in both two
and three dimensions.

in Equation 40. We found that this can be alleviated by using the second order accurate SL-MacCormack
advection scheme from Section 3.2 to remap time tn values of φ.

We now consider the case where the second grid is allowed to move. Using the same analytic function
as in the stationary case, Tables 11 and 12 show the results for backward euler and trapezoid rule time
integration using semi-Lagrangian and SL-MacCormack remapping respectively. Finally, table 13 shows
that using semi-Lagrangian remapping degenerates the trapezoid rule time integration scheme towards first
order as compared to when using SL-MacCormack remapping.

In three spatial dimensions we use the domain Ω = [−1, 1]× [−1, 1]× [−1, 1] which is discretized by two
overlapping grids as listed in Table 14 and shown in Figure 23. We consider solving for φ values at cell
centers for the analytic function φ(x, y, z, t) = e−.03π2tsin(πx)sin(πy)sin(πz). Table 15 gives the errors and
orders of accuracy when using trapezoid rule time integration and SL-MacCormack remapping.

5.1. Navier-Stokes Viscosity

For spatially constant viscosity, the viscous terms in the Navier-Stokes equations can be treated in an
implicit mannger by independently solving a scalar heat-like operator for each of the components of the
velocity. When using standard MAC grids, this becomes problematic when one grid is rotated with respect
to another since the cleanly separated MAC grid degrees of freedom on one grid are mixed when considered
using the coordinate system on the other grid. Thus we compute a world space velocity vector at each
cell center by averaging the samples stored at incident faces and then rotating the resulting vector into
world space. We then apply the cell based heat equation separately and independently in each component
direction, i.e. for each component of the cell centered vector field. Notably, this does not require constructing
an additional mesh, as we can reuse the one that will be used for the pressure Poisson solve. After applying
the viscous update to the cell center velocity components, we could interpolate these back to the grid degrees
of freedom but this increases numerical dissipation. Instead, one could interpolate the time tn+1 values back
to the original Cartesian grid cell center degrees of freedom, compute differences with the time tn values,
and then map these differences back to the face degrees of freedom–however, this also seemed to lower the
order of accuracy. Therefore, we compute differences between the time tn and time tn+1 values directly on
the Voronoi cell center degrees of freedom and then interpolate these differences back to the removed cells
and a one layer thick band of ghost cells on each grid before distributing these differences back to the faces.
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Object space domain ∆x ~s θ
1 [−1, 1]× [−1, 1] 2/n (0, 0) 0
2 [−.4, .4]× [−.4, .4] .8/n (−.15, .1) + t(.2,−.1) (1 + t)π/6

Table 8: Domains, cell sizes, positions (~s) and orientations (θ) of the four grids used in our heat equation tests in two spatial
dimensions. n indicates the number of cells in each dimension on the coarsest grid.

1

2

t = 0

t = .5

t = 1

Figure 21: The domains of the grids used in our heat equation tests in 2 spatial dimensions with the second grid shown at its
time t = 0, t = .5 and t = 1 positions and orientations.

In order to prevent numerical drift in overlapped regions, faces incident only to removed cells are updated
by averaging the interpolated time tn+1 values at incident cell centers. We note that applying slip boundary
conditions to a rotated grid would cause the velocity components to no longer be cleanly separated, however,
we do not consider this case.

We once again consider the moving grids in Table 8, Figure 21, Table 14 and Figure 23. In two spatial
dimensions we consider the analytic vector valued function ~φ(x, y, t) = (e−.02π2tsin(πx)sin(πy),

e−.13π2tsin(2πx)sin(3πy)). Table 16 gives the errors and orders of accuracy when using trapezoid time
integration and SL-MacCormack remapping. In three spatial dimensions we consider the analytic vector
valued function ~φ(x, y, z, t) = (e−.03π2tsin(πx)sin(πy)sin(πz), e−.12π2tsin(2πx)sin(2πy)sin(2πz),

e−.14π2tsin(πx)sin(2πy)sin(3πz)). Table 17 gives the errors and orders of accuracy when using trapezoid
time integration and SL-MacCormack remapping.

5.1.1. Monolithically Coupled Formulation

There are several cases where the component-wise solution approach from Section 5.1 poses issues. For
example, when applying slip boundary conditions the components of the velocity are coupled together along
the boundaries or in the case of spatially varying viscosity where the diffusion equations are coupled across
spatial dimensions. One approach to simplify this was considered in [71] where the coupling terms were
treated explicitly in order to separate the solve into three separate heat equations. Although we do not
consider spatially varying viscosity in this paper or non-axis aligned slip boundary conditions, we briefly
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n L1 Error Order L∞ Error Order
32 4.34× 10−4 – 2.41× 10−3 –
64 1.56× 10−4 1.48 6.74× 10−4 1.84
128 6.35× 10−5 1.29 1.59× 10−4 2.09
256 2.79× 10−5 1.18 6.99× 10−5 1.18
512 1.32× 10−5 1.08 3.30× 10−5 1.08
1024 6.46× 10−6 1.03 1.61× 10−5 1.04

Table 9: Convergence results for solving a heat equation with analytic solution φ(x, y, t) = e−.02π
2tsin(πx)sin(πy) on two

stationary grids using backward Euler time integration.

n L1 Error Order L∞ Error Order
32 2.86× 10−4 – 2.39× 10−3 –
64 7.05× 10−5 2.02 7.35× 10−4 1.70
128 1.72× 10−5 2.04 1.82× 10−4 2.02
256 4.26× 10−6 2.01 4.57× 10−5 1.99
512 1.06× 10−6 2.01 1.17× 10−5 1.97
1024 2.65× 10−7 2.00 2.90× 10−6 2.01

Table 10: Convergence results for solving a heat equation with analytic solution φ(x, y, t) = e−.02π
2tsin(πx)sin(πy) on two

stationary grids using trapezoid rule time integration.

consider a fully coupled solve along the lines of [75] which does not require interpolating back and forth (or
in our case interpolating in one direction and mapping the differences back in the other direction).

Since the following exercise is only done for the purpose of illustration we consider solving on a fixed
Voronoi mesh only and do not map back and forth from the Cartesian grids. In addition we only consider
Dirichlet boundary conditions. With these simplifications our approach to a coupled solver is as follows. We
start with component values of ~φ on each Voronoi face and stack all the internal faces into a single vector
φf , and all the boundary faces with Dirichlet boundary conditions into φf,d. For each component of the
velocity in world space we use unweighted least squares to interpolate from incident Voronoi faces to cell
centers, i.e. φx = Wxφf + Wx,dφf,d and φy = Wyφf + Wy,dφf,d. In order to compute the gradient at

faces along the domain boundary, it is necessary to have ~φ values at ghost cells across faces with Dirichlet
boundary conditions, which we denote as φx,d and φy,d. Using φx, φy, φx,d, and φy,d we can discretize
the viscous forces at cell centers and then conservatively distribute these forces back to the Voronoi faces by
multiplying by WT

x and WT
y . Using backward Euler time integration to integrate these forces we arrive at

the following symmetric positive definite system for fully coupled face unknowns where we have stacked Wx

and Wy into W: (
Vf −∆tβWT

(
VcDG 0

0 VcDG

)
W

)
φn+1
f = Vfφ

n
f

+∆tβWT

(
VcDG 0

0 VcDG

)
Wdφ

n+1
f,d + ∆tβWT

(
VcDGdφ

n+1
x,d

VcDGdφ
n+1
y,d

)
(41)

where Vf is a diagonal matrix of face dual cell volumes.
Table 18 gives the errors and orders of accuracy when applying this scheme with the analytic function

~φ(x, y, t) = (e−.02π2tsin(πx)sin(πy), e−.13π2tsin(2πx)sin(3πy)). In tests we found that solving Equation 41,
over the previous method of solving for the updated values independently in each direction, did not reduce
numerical dissipation. We did not experiment with trapezoid rule and other ways of raising the order of
accuracy, or explore ways for handling moving grids by mapping back and forth with the original MAC grid
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Figure 22: When interpolating between cell centered values on the Voronoi mesh (drawn as blue and red faces which correspond
to the Cartesian faces taken from the coarse and fine grids respectively, and green faces which correspond to unstructured
Voronoi faces), we use a hybrid interpolation scheme. The interpolation mesh is drawn in black overtop the Voronoi mesh.
If an interpolation location lies within a square on the interpolation mesh, bilinear interpolation is applied. Otherwise, if
an interpolation location lies within a triangle of the Delaunay mesh dual of the unstructured part of the Voronoi diagram,
barycentric interpolation over that triangle is applied. Note that in the former case, if we were using the full Delaunay mesh
dual of the Voronoi diagram these squares would be tesselated with triangles and only barycentric interpolation would be used.
However, this would reduce accuracy.

degrees of freedom because we were not able to devise a workable preconditioner for this approach. We found
that our incomplete Cholesky preconditioner actually led to more instead of less iterations.

6. Incompressible Flow

We consider the incompressible Navier-Stokes equations as follows:

ρ

(
∂~u

∂t
+ (~u · ∇) ~u

)
= −∇p+ µ∇2~u (42)

∇ · ~u = 0 (43)

where ρ is the density, ~u is the velocity, p is the pressure and µ is the viscosity. In order to solve Equations
42 and 43 we use a splitting method (see [19]). The first step addresses the advective component as follows:

~̂u = ~un −∆t(~u · ∇)~u (44)

We solve Equation 44 using the second order accurate SL-MacCormack advection scheme from Section 3.2
to obtain an intermediate velocity field ~̂u. We address boundary conditions at the computational boundary
by using constant extrapolation to fill ghost cells. After applying these boundary conditions, we proceed to
advect values to every face, obtaining a valid velocity field everywhere. We then continue to add viscous
forces by solving the following equation:

~u∗ = ~̂u+
∆t

ρ
µ∇2~u∗ (45)
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n L1 Error Order L∞ Error Order
32 1.82× 10−3 – 1.89× 10−2 –
64 7.13× 10−4 1.35 8.12× 10−3 1.22
128 3.06× 10−4 1.22 3.71× 10−3 1.13
256 1.42× 10−4 1.11 1.83× 10−3 1.02
512 6.82× 10−5 1.06 9.02× 10−4 1.02
1024 3.33× 10−5 1.03 4.47× 10−4 1.01

Table 11: Convergence results for solving a heat equation with analytic solution φ(x, y, t) = e−.02π
2tsin(πx)sin(πy) on one

stationary grid and one moving grid using semi-Lagrangian remapping and backward euler time integration.

n L1 Error Order L∞ Error Order
32 5.68× 10−4 – 1.04× 10−2 –
64 1.34× 10−4 2.08 2.33× 10−3 2.16
128 3.29× 10−5 2.03 5.75× 10−4 2.02
256 8.40× 10−6 1.97 1.41× 10−4 2.02
512 2.09× 10−6 2.01 3.44× 10−5 2.04
1024 5.26× 10−7 1.99 8.77× 10−6 1.97

Table 12: Convergence results for solving a heat equation with analytic solution φ(x, y, t) = e−.02π
2tsin(πx)sin(πy) on one

stationary grid and one moving grid using SL-MacCormack remapping and trapezoid rule time integration.

We solve Equation 45 using a second order accurate time discretization (Equation 40) independently in
each world space component direction as described in Section 5.1. In this step we handle inflow boundary
conditions by specifying Dirichlet boundary conditions in all components of the velocity. Outflow boundary
conditions are handled by specifying zero Neumann boundary conditions in all components of the velocity to
prevent momentum from being exchanged across the boundary due to viscous stress (although momentum
still leaves the domain in the advection step). Slip boundary conditions are handled by specifying Dirichlet
boundary conditions in the normal component and zero Neuman boundary conditions in the tangential
components (noting that in this case we assume the domain boundaries lie along axis aligned planes in order
to simplify applying slip boundary conditions in the viscous solve as discussed in Section 5.1.1). After adding
viscous forces we proceed to solve for pressure as follows:

∇2p =
ρ

∆t
∇ · ~u∗ (46)

Since we solve Equation 46 on the Voronoi mesh it is first necessary to compute values of ~u∗ for each
face on the Voronoi mesh before we can compute the divergence of of the post viscosity velocities. Thus,
we interpolate a velocity from the Cartesian grids for each face of the Voronoi mesh retaining only the
component normal to that face. Note that most Voronoi faces coincide with Cartesian grid faces and thus
interpolation is not required for these faces. Then denoting the vector of all these Voronoi face velocities as
u∗ we solve the following analog of Equation 35:

−VcDGp̂ = −VcDu∗ + VcD
(
Gdp̂d − un+1

n

)
(47)

where p̂ are the pressures scaled by ∆t/ρ, p̂d represents Dirichlet boundary conditions and un+1
n represents

the Neumann boundary conditions implied by faces with fixed velocities. We handle inflow and slip boundary
conditions by setting values of un+1

n at faces along the boundary. Outflow boundary conditions are handled
by specifying zero Dirichlet boundary conditions. After solving for pressure we update the velocities as
follows:

~un+1 = ~u∗ − ∆t

ρ
∇p (48)
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n L1 Error Order L∞ Error Order
32 1.77× 10−3 – 1.90× 10−2 –
64 6.86× 10−4 1.37 8.22× 10−3 1.21
128 2.93× 10−4 1.23 3.76× 10−3 1.13
256 1.36× 10−4 1.11 1.85× 10−3 1.02
512 6.51× 10−5 1.06 9.14× 10−4 1.02
1024 3.18× 10−5 1.03 4.53× 10−4 1.01

Table 13: Convergence results for solving a heat equation with analytic solution φ(x, y, t) = e−.02π
2tsin(πx)sin(πy) on a moving

grid using semi-Lagrangian remapping and trapezoid rule time integration.

Object space domain ∆x ~s θ,~a
1 [−1, 1]× [−1, 1]× [−1, 1] 2/n (0, 0, 0) 0, (0, 0, 0)

2 [−.4, .4]× [−.4, .4]× [−.4, .4] 0.8/n (−.15, .1, 0) + t(.2,−.1, .05) (1 + t)π/4, (1/
√

6, 2/
√

6, 1/
√

6)

Table 14: Domains, cell sizes, positions (~s) and orientations (angle θ, axis ~a) of the two grids used in our heat equation tests
in three spatial dimensions. n indicates the number of cells in each dimension on the coarsest grid.

Equation 48 is used to update the velocities at all faces on the Voronoi mesh using pressure gradients
computed by differencing the pressure samples at incident non-removed cells as in Equation 34. In order to
update Cartesian grid faces not coincident to faces on the Voronoi mesh we use an approach similar to that
applied at the end of the viscous step in Section 5.1. First we compute a velocity vector at each non-removed
cell center by using regularized linear least squares fit of the velocity components at incident faces on the
Voronoi mesh. We then interpolate a full velocity vector at removed and ghost cell centers before computing
the updated velocity components at removed Cartesian grid faces by averaging the velocities at incident
Cartesian grid cell centers.

We treat bodies immersed in the flow as follows. When advecting velocities we set velocity Dirichlet
boundary conditions at faces whose centers lie inside objects. We then advect every face obtaining a valid
velocity field everywhere after advection. In certain examples we also solve an advection equation for a
passive scalar φ at cell centers for visualization purposes. In this case we handle objects by first creating a
levelset for each object and then extrapolating φ in the normal direction using an O(nlogn) fast marching type
method as described in [1, 24]. In both the viscous and pressure steps we use a simple immersed boundary
type approach. In the viscous step, since the velocity is known inside objects, we simply specify Dirichlet
boundary conditions at the non-removed cell centers inside objects using the pointwise object velocity. In
the pressure solve we similarly set values of un+1

n at faces on the Voronoi mesh whose centers lie inside an
object.

6.1. Numerical Results

We use the ghost cell parameters αgrid = 2 and αfluid = 1 as described in Section 3.3. Due to the way the
grids are chosen and the fact that they are all Cartesian we have considerable flexibility when deciding how
to decompose the domain when allocating MPI processes as discussed in Section 2.2. In most of the simpler
examples we allocate a separate MPI process per logical grid. For larger examples we split each logical grid
into several subgrids each having their own MPI process in order to balance computational and memory loads
among the computational nodes as described in Section 2.2. In the following subsections we list explicitly
how the grids are subdivided and MPI processes are allocated in the captions of the corresponding grid
configuration tables.

6.1.1. Two-dimensional Couette flow

We first consider a two-dimensional Couette flow where fluid flows horizontally between two walls. The
bottom wall is stationary while the top moves from left to right with a horizontal velocity u0 = 1. In this
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Figure 23: The domains of the grids used in our heat tests in three spatial dimensions with the second grid shown at its time
t = 0, t = .5 and t = 1 positions and orientations.

test we use the domain [−1, 1] × [−1, 1] and let ρ = 1, µ = .01 and target pressure gradient ∂p
∂x = −.15.

With these conditions, the analytic solution is given as ~u(x, y, t) = (u0y + 1
2µ

∂p
∂x (y2 − y), 0). In this test

we use analytic velocity boundary conditions on the top, left and bottom sides of the domain, and zero
pressure outflow boundary conditions on the right side of the domain. We discretize the domain with a large
stationary grid and insert a second finer moving grid as listed in Table 19. The second grid is not intended
to add any additional detail or accuracy to the flow, but rather in this case we are demonstrating that it
does not adversely affect the flow field. The u direction velocities on the x medial plane and pressures on
the y medial plane are shown in Figure 24. Note that for both velocity and pressure the results convergence
towards the analytic solution as the grid is refined and that the convergence rate corresponds to first order
accuracy. Note that the sharp changes in the pressure visible in Figure 24 (Top) are at grid boundaries and
vary over time due to error incurred in the velocity field as a result of the remapping as the second grid
moves. However, first order accurate convergence was found at each time. In addition, the results for the
same test using only the background grid are shown producing nearly the analytic solution.

6.1.2. Two-dimensional lid driven cavity

We consider a two-dimensional lid driven cavity and compare our results to those of [26]. In this test
we use the domain [−1, 1] × [−1, 1] with zero normal and tangential velocity boundary conditions on each
side except for the top of the domain along which we specify a tangential velocity of 1. We discretize the
domain with a large stationary grid and insert a second finer moving grid as listed in Table 19 with the MPI
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Figure 24: The results for our Couette flow example using two grids of varying resolutions and when using only the single
coarser grid at the finest resolution. The analytic solution is also drawn. (Top) shows the pressure along the horizontal plane
through the geometry center of the domain. (Bottom) shows the u velocities on the vertical plane through the geometric center
of the domain. Note that the single grid simulation produces values nearly identical to that of the analytic solution while the
two grid simulation includes a truncation error that vanishes under refinement demonstrating first order accuracy. Note that
although this example is intended to examine the behavior of a steady state solution, since the second grid is moving a time
varying error is introduced and the above plots are given for the solution at t = 41.6667 at which point the solution is well into
its steady state regime. The pressure and velocity profiles at different times within this regime demonstrate similar convergence
behavior.
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n L1 Error Order L∞ Error Order
32 3.09× 10−4 – 9.95× 10−3 –
64 7.54× 10−5 2.04 2.64× 10−3 1.91
128 1.86× 10−5 2.02 6.64× 10−4 1.99
256 4.61× 10−6 2.01 1.77× 10−4 1.90

Table 15: Convergence results for solving a heat equation with analytic solution φ(x, y, z, t) = e−.03π
2tsin(πx)sin(πy)sin(πz)

on one stationary grid and one moving grid using SL-MacCormack remapping and trapezoid rule time integration.

n L1 Error Order L∞ Error Order
32 7.47× 10−3 – 4.41× 10−2 –
64 1.82× 10−3 2.04 1.01× 10−2 2.13
128 4.50× 10−4 2.02 2.51× 10−3 2.01
256 1.12× 10−4 2.01 6.26× 10−4 2.00
512 2.78× 10−5 2.00 1.56× 10−4 2.00
1024 6.94× 10−6 2.00 3.90× 10−5 2.00

Table 16: Convergence results for solving a separate heat equation in each direction with analytic solution ~φ(x, y, t) =

(e−.02π
2tsin(πx)sin(πy), e−.13π

2tsin(2πx)sin(3πy)) on one stationary and one moving grid using SL-MacCormack remapping
and trapezoid rule time integration.

subdivision parameters in the table’s caption. The second grid is not intended to add any additional detail
or accuracy to the flow, but rather in this case we are demonstrating that it does not adversely affect the flow
field. The grid configurations and streamlines are shown in Figure 25 for Reynolds numbers 100, 400, 1000
and 5000. Our method produces the same vortices as observed by [26]. The u direction velocities on the x
medial plane and v direction velocities on the y medial plane are shown in Figures 26 and 27 respectively.
Our results are very close to those from [26], particularly for smaller Reynolds numbers. We also compared
our results to values computed using only a single grid and found that they were nearly identical.

6.1.3. Two-dimensional moving vortex

In order to demonstrate the ability of our method to smoothly transition flow features across grid bound-
aries, we consider a vortex in a flow channel being transported from one grid to another stationary larger
grid. We discretize the domain [0, 1]× [0, 1] with two grids as listed in Table 20, noting that we consider both
the case where the second grid remains stationary at its t = 0 orientation and the case where the second
grid rotates. We specify inflow boundary conditions at the left side of the domain, slip boundary conditions
at the top and bottom walls and outflow boundary conditions at the right side of the domain. We give the
initial time t = 0 velocity field as follows:

~u0(~x) = (1, 0)T +
(xc − y, x− yc)T

|~x− ~xc|

{
e

(
−.25

|~x−~xc|/r−|~x−~xc|2/r2

)
if ‖~x− ~xc‖ < r

0 if ‖~x− ~xc‖ ≥ r
(49)

where ~x = (x, y)T , ~xc = (xc, yc)
T is the center of the vortex, and r = .25 is the diameter of the vortex. We

plot the vorticity as the vortex is moving from one grid to the other in Figure 28 at time t = .20833. Note
that no artifacts are observed at the grid boundaries when the fine grid is stationary or rotating. Figures
29 and 30 give the errors, computed using an n = 1024 simulation as a baseline, and orders of accuracy for
the stationary and rotating grid cases respectively. We note that both the L1 and L∞ errors tend to zero
implying self convergence and that the orders of accuracy tend towards first order as the grids are refined.
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Figure 25: Streamlines for the lid driven cavity example. Notice the tiny vortices at the bottom right corners of the Reynolds
number 1000 and 5000 simulations and at the bottom left corner of the Reynolds number 5000 simulation. These vortices are
the same as reported by [26].
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Figure 26: The u velocities on the vertical plane through the geometric center of cavity. The red lines correspond to our results
and the blue ’+’ symbols correspond to the results from [26]. Note the good agreement between the results, particularly for
smaller Reynolds numbers.
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Figure 27: The v velocities on the horizontal line through the geometric center of cavity. The red lines correspond to our results
and the blue ’+’ symbols correspond to the results from [26]. Note the good agreement between the results, particularly for
smaller Reynolds numbers.
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n L1 Error Order L∞ Error Order
32 4.99× 10−3 – 3.98× 10−2 –
64 1.23× 10−3 2.03 1.01× 10−2 1.98
128 3.04× 10−4 2.01 2.49× 10−3 2.02
256 7.55× 10−5 2.01 5.97× 10−4 2.06

Table 17: Convergence results for solving a separate heat equation in each direction with analytic solution ~φ(x, y, t) =

(e−.03π
2tsin(πx)sin(πy)sin(πz), e−.12π

2tsin(2πx)sin(2πy)sin(2πz), e−.14π
2tsin(πx)sin(2πy)sin(3πz)) on one stationary grid

and one moving grid using SL-MacCormack remapping and trapezoid rule time integration.

n L1 Error Order L∞ Error Order
32 1.42× 10−2 – 2.08× 10−1 –
64 6.52× 10−3 1.12 1.06× 10−1 0.96
128 3.33× 10−3 0.97 8.33× 10−2 0.35
256 1.88× 10−3 0.83 5.51× 10−2 0.60

Table 18: Convergence results for solving a heat equation in each direction coupled in a monolithic system with analytic solution
~φ(x, y, t) = (e−.02π

2tsin(πx)sin(πy), e−.13π
2tsin(2πx)sin(3πy)) on two stationary grids using backward euler time integration.

Object space domain ∆x ~s θ
1 [0, 1]× [0, 1] 1/n (0, 0) 0
2 [−.15, .15]× [−.15, .15] 0.3/n (.5, .5) + cos(.5πt)(−.15, .05) tπ/6

Table 19: Domains, cell sizes, positions (~s) and orientations (angle θ) of the two grids used in our Couette flow and lid driven
cavity tests. n indicates the number of cells in each dimension on the coarsest grid. In the case of the lid driven cavity test, for
Reynolds numbers 100 and 400, n = 128 was used and for Reynolds numbers 1000 and 5000, n = 256 was used. Additionally
for the case of the lid driven cavity test, during parallel simulation each grid remained unsubdivided and was allocated a single
MPI process since the number of cells on each grid was the identical.
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Object space domain ∆x ~s θ
1 [0, 1]× [0, 1] 1/n (0, 0) 0
2 [−.2, .2]× [−.2, .2] 0.4/n (.5, .5) −tπ/3

Table 20: Domains, cell sizes, positions (~s) and orientations (angle θ) of the two grids used in our vortex flow past grid boundary
tests. n indicates the number of cells in each dimension on the coarsest grid. During parallel simulation each grid remained
unsubdivided and was allocated a single MPI process since the number of cells on each grid was the identical.

6.1.4. Two-dimensional flow past a stationary circular cylinder

We consider the two dimensional stationary circular cylinder example from [41] in which a two dimensional
cylinder is placed within a flow field with approximate far field boundary conditions in order to examine the
resulting vortex shedding patterns. We discretize the domain [0, 38.4]× [0, 25.6] using three grids as listed in
Table 21 and as illustrated in Figure 31, noting that we consider both the cases where the grid containing the
cylinder remains stationary at its time t = 0 orientation and when it is allowed to rotate while the cylinder
remains stationary. Note that our Chimera grid approach allows us to discretize this large domain efficiently
by using a coarse grid covering the entire domain in order to approximate far field boundary conditions
such that vortices travel a long way before interacting with the domain walls. The boundary conditions
are specified as follows: the left of the domain has inflow boundary conditions with a velocity of 1, the
right of the domain has outflow boundary conditions, and the top and bottom walls are specified with slip
boundary conditions. The cylinder has diameter 1 and its center is located at ~sobject = (9.6, 12.8). We use
a characteristic length of 1 and a free stream velocity of 1 when computing the viscosity from the Reynolds
number. We calculate the coefficient of drag CD as two times the net force on the cylinder in the x direction
and the coefficient of lift CL as two times the net force on the cylinder in the y direction.

In Table 22 we give the average values and ranges of CD, the ranges of CL, and Strouhal numbers
produced by simulations with Reynolds numbers 100, 150 and 200 using our method with the fine grid
enclosing the cylinder held stationary at its time t = 0 orientation. We note that the values produced by our
method clearly lie within or are very close to the ranges of values produced and cited by [41]. In particularly
the Strouhal numbers are all in very close agreement with both the numerical and experimental results given
in [41]. For Reynolds number 100, Figure 24 gives the average values and ranges of CD, the range of CL,
and Strouhal numbers as the grids are refined.

Table 23 gives the average value and range of CD, the range of CL, and Strouhal number produced by a
simulation with Reynolds number 100 using our method with the fine grid enclosing the cylinder undergoing
a specified rotation. We note that the range for the coefficient of drag is slightly larger, potentially induced
by the motion of the grid enclosing the cylinder. Some artifacts of this type are to be expected before the
method has exactly converged. However, we found that under refinement the range tended towards the
values found in [41] and that produced by the simulation with the stationary grid. The other values are
nearly identical to those from the stationary case including the Strouhal number indicating that the motion
of the grid did not change the rate at which vortices were shed even though the grid rotated at a different
frequency.

In Figure 32 we plot the pressures when CL is at its negative extrema for all of the tests. The plot
for the Reynolds number 200 case shows results comparable to the pressure plots from [41]. The pressure
plots for the Reynolds number 100 case on the stationary and rotating grids are also nearly identical further
confirming that the motion of the grid did not adversely affect the solution. We would also like to emphasize
to the reader that since the pressures produced in an incompressible flow solver are equivalent to Lagrange
multipliers enforcing the divergence free constraint, that the forces are highly susceptible to oscillations even
on high refined grids. See [50, 77, 49] for further discussion.
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Figure 28: Vorticity isocontours for the vortex flow across grid boundary example at t = .20833. Note that the isocontours
match at the grid boundaries and no artifacts are visible along or further away from the boundaries.
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Figure 29: The errors and orders of accuracy of velocities for the vortex flow across grid boundary example, with a stationary
fine grid. Figures (a) and (c) show that the error tends towards zero in both the L1 and L∞ norms implying self convergence,
whereas Figures (b) and (d) show that the error seems to be improving towards first order accuracy as the grid is refined.
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Figure 30: The errors and orders of accuracy of velocities for the vortex flow across grid boundary example, with a rotating
fine grid. Figures (a) and (c) show that the error tends towards zero in both the L1 and L∞ norms implying self convergence,
whereas Figures (b) and (d) show that the error seems to be improving towards first order accuracy as the grid is refined.
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Figure 31: Vorticity isocontours for the flow past a circular cylinder example with Reynolds number 200.

Object space domain ∆x ~s θ
1 [0, 38.4]× [0, 25.6] 25.6/n (0, 0) 0
2 [−2, 2]× [−2, 2] 4/n (9.6, 12.8) tπ/4
3 [11, 23]× [8.8, 16.8] 8/n (0, 0) 0

Table 21: Domains, cell sizes, positions (~s) and orientations (angle θ) of the three grids used in our flow past a circular cylinder
tests. n indicates the number of cells along the y-axis on the coarsest grid. During parallel simulation the background grid was
allocated 24 processors, the fine grid enclosing the cylinder was allocated 16 processors, and the grid capturing the wake was
allocated 24 processors.

6.1.5. Two-dimensional flow past a rotating elliptic cylinder

In order to examine the case where the structure is moving we consider the case of a two-dimensional
rotating elliptic cylinder similar to the stationary elliptic cylinder example from [41]. We discretize the
domain [0, 25.6] × [0, 24] with three grids as listed in Table 25 and as shown in Figure 33(a), and use the
same boundary conditions as in case of the circular cylinder. We place an elliptic cylinder with a long axis
length of 1 (also the characteristic length) and aspect ratio of .2 at ~ssolid = (9.6, 12) with its long axis along
the x axis in object space. The cylinder rotates with angular velocity θsolid = π/4 which is matched by
the enclosing fine grid. For Reynolds number 200, Figure 34 gives the errors and orders of accuracy for our
method computed by comparing against a baseline simulation run at n = 1024. Note that both the L1 and
L∞ errors tend towards zero implying self convergence. The orders of accuracy tend towards first order for
the L1 error and half order for the L∞ error. We note that that errors are dominated by the errors at the
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Figure 32: Pressure contours for the flow past a circular cylinder example taken when the coefficient of lift was at its most
negative value. Note that (d) agrees with the Reynolds number 200 pressure plots from [41] and that the Reynolds number 100
pressure plots for the (a) stationary grid and (b) rotating grid are nearly identical.
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Reynolds Number CD CL St
100 1.3754± .0094 ±.3347 .1685
150 1.3551± .0260 ±.5219 .1868
200 1.3638± .0446 ±.6822 .1982

Table 22: The coefficients of drag and lift (CD & CL) and Strouhal numbers for varying Reynolds numbers computed using our
method with all grids stationary as listed in Table 21 and n = 512. Note the good agreement of all values with those produced
and cited by [41].

Reynolds Number CD CL St
100 1.3755± .0108 ±.3387 .1684

Table 23: The coefficients of drag and lift (CD & CL) and Strouhal number for Reynolds number 100 computed using our
method where the rotation of the grid enclosing the cylinder is specified as listed in Table 21 and n = 512. Note that the values
are close to those for the stationary case as listed in Table 22.

cylinder’s boundary and could be reduced by substituting a more accurate fluid-structure coupling scheme
without changing the way the intergrid boundaries are handled. See the example in Section 6.1.3 in order to
examine the behavior of the errors when they are not dominated by those in the structure boundary layer.
The vorticity contours are plotted in Figure 33 and show good agreement at grid boundaries.
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n CD CL St
64 1.3865± .0138 ±.2871 .1580
128 1.3653± .0083 ±.3083 .1643
256 1.3716± .0092 ±.3295 .1674
512 1.3754± .0094 ±.3347 .1685
1024 1.3770± .0097 ±.3391 .1691

Table 24: The coefficients of drag and lift (CD & CL) and Strouhal numbers for Reynolds number 100 computed using our
method with all grids stationary as listed in Table 21 and varying resolutions. The coefficients of drag and lift and Strouhal
numbers clearly tend towards the values produced and cited in [41]. Additionally, the Strouhal numbers clearly demonstrate
first order convergence as the grids are refined. While the exact convergence regimes of the coefficients of drag and lift are less
clear, the difference between the values at successive resolutions is decreasing.
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Object space domain ∆x ~s θ
1 [0, 25.6]× [0, 24] 25.6/n (0, 0) 0
2 [−1, 1]× [−1.5, 1.5] 2/n (9.6, 12) tπ/4
3 [10, 22]× [8, 16] 4/n (0, 0) 0

Table 25: Domains, cell sizes, positions (~s) and orientations (angle θ) of the three grids used in our flow past a rotating elliptic
cylinder example. n indicates the number of cells in x-axis on the coarsest grid. For all tests in this example n = 256. Note
that the second grid encloses the elliptic cylinder and rotates with the cylinder at an angular velocity of π/4. During parallel
simulation each of the three grids remains unsubdivided and was allocated a single MPI process since the number of cells on
each grid were similar enough to not warrant any subdivision.

6.1.6. Two-dimensional flow past multiple rotating elliptic cylinders

In our final two-dimensional example we consider three rotating elliptic cylinders in order to demonstrate
our method on a more complex example. We discretize the domain [0, 9] × [0, 6] with six grids as listed in
Table 26 and shown in Figure 35(a), where grids 3, 4 and 5 each enclose and move with an elliptic cylinder
as listed in Table 27. Note that unlike previous examples the grids in this case were subdivided for parallel
computation also as described in the caption of Table 26. We use the same boundary conditions as used in
the case of the stationary circular cylinder. In order to maximize the number of details produced we used
zero viscosity. Figures 35 and 36 show the vorticity at times t = 5.3333 and t = 18.959. Notice the highly
detailed vortices coming off the tips of the elliptic cylinders and that they smoothly transfer onto the coarse
grids.

Object space domain ∆x ~s θ
1 [0, 9]× [0, 6] 6/n (0, 0) 0
2 [−1, 1]× [−1, 1] 1/n (2, 3) 0
3 [−0.1, 0.1]× [−0.25, 0.25] 0.4/n (1.75, 3.125) tπ/6
4 [−0.375, 0.375]× [−0.15, 0.15] 0.6/n (2, 2.875) tπ/8
5 [−0.25, 0.25]× [−0.1, 0.1] 0.4/n (2.25, 3.125) −tπ/5
6 [2.5, 8.5]× [1.5, 4.5] 3/n (0, 0) 0

Table 26: Domains, cell sizes, positions (~s) and orientations (angle θ) of the six grids used in our flow past three rotating
elliptic cylinders simulation where n = 256. Grids 3, 4 and 5 each enclose and track one of the elliptical cylinders as shown
in Figures 35 and 36. During parallel simulation, a single MPI process was allocated to each grid enclosing a cylinder. Grid 2
was allocated two MPI processes and placed over the three cylinders in order to capture the interactions between them. Grid
6 was added to in order to capture the wake and was allocated two MPI processes. The background grid 1 was only allocated
a single MPI process due to its relative low resolution.

(Long axis length, Short axis length) ~ssolid θsolid

1 (0.125, 0.025) (1.75, 3.125) π/2 + tπ/6
2 (0.1875, 0.0375) (2, 2.875) tπ/8
3 (0.125, 0.025) (2.25, 3.125) −tπ/5

Table 27: Axis lengths, positions (~s) and orientations (angle θ) of the three elliptic cylinders used in our flow past three rotating
elliptic cylinders example. Note that the long axis of each cylinder lies along the x axis in object space.
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(a) Vorticity, entire domain
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(b) Vorticity, close-up

Figure 33: Vorticity isocontours for the flow past an elliptic cylinder example. Note that the elliptical cylinder and the grid
attached to it are rotating with angular velocity π/4.
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(c) Error in L∞ norm
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(d) Order in L∞ norm

Figure 34: The error and order of accuracy of the velocities in the flow past rotating elliptic cylinder example. Figures (a)
and (c) show that the error tends towards zero in both the L1 and L∞ norms implying self convergence. Figure (b) shows
that the L1 error tends towards first order accuracy and (d) shows that the L∞ error tends towards half order accuracy under
refinement.
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Figure 35: Vorticity isocontours at time t = 5.3333 for the flow past multiple elliptic cylinders example.
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Figure 36: Vorticity at time t = 18.958 for the flow past multiple elliptic cylinders example.
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6.1.7. Three-dimensional smoke jet past rotating ellipsoid

In order to demonstrate that our method extends trivially to three dimensions we consider a smoke jet
impacting and dispersing around a rotating ellipsoid. We discretize the domain [0, 9] × [0, 6] × [0, 6] using
three grids as listed in Table 28 where one grid encloses and moves with the rotating ellipsoid. The axis
lengths of the ellipsoid are .25, .042 and .125 which correspond to the x, y and z axes in object space
respectively. The location of the ellipsoid is ~ssolid = (1, 3, 3) and the orientation is specified by a rotation
of θsolid = t

√
2π/6 radians about the axis ~asolid = (1/

√
2, 0, 1/

√
2). We specify inflow boundary conditions

along the x = 0 side of the domain, where the tangential components of the velocity are zero and the normal
component is specified as follows:

u(0, y, z) =


1 if |(y, z)− (3, 3)| ≤ .09

1− (|(y, z)− (3, 3)| − .09)/.03)) if .09 < |(y, z)− (3, 3)| < .12

0 otherwise

(50)

On the y = 0, y = 6, z = 0 and z = 6 sides of the domain we specify zero velocity for all components and on
the x = 9 side of the domain we use outflow boundary conditions. We chose to use the velocity field defined
in Equation 50 in order to generate a smooth velocity field since the background grid cells were too large to
accurately resolve a circular source if the velocity field was discontinuous at the edges of the source.

In order to visualize the flow we passively advect a scalar field. The scalar field is controlled by specifying
a single layer of cells along the x = 0 side of the domain using the same function as used for the inflow
velocity, i.e. φ(0, y, z) = u(0, y, z). In the remainder of the domain, the value of the passive scalar is initially
set to zero. For passive scalar advection, the ghost cells on the computational boundary of the domain are
filled using constant extrapolation. In order to advect the scalar field we use SL-MacCormack advection, and
note that we revert to first order accuracy when a local extrema is created as described in [76]. In Figure 37
we show the results for various times near the beginning of the simulation. Figure 38 shows the results after
the smoke has been allowed to propagate further into the domain. Note the sharp details near the object
and the smooth transition between grids.

Object space domain ∆x ~s θ,~a
1 [0, 9]× [0, 6]× [0, 6] 6/n (0, 0, 0) 0, (0, 0, 0)

2 [−.5, .5]× [−.5, .5]× [−.5, .5] 1/n (1, 3, 3) t
√

2π/6, (1/
√

2, 0, 1/
√

2)
3 [.7, 6.7]× [1.5, 4.5]× [1.5, 4.5] 3/n (0, 0, 0) 0, (0, 0, 0)

Table 28: Domains, cell sizes, positions (~s) and orientations (angle θ, axis ~a) of the three grids used in our three-dimensional
smoke jet past rotating ellipsoid example. In this example we use n = 256. During parallel simulation we allocate 8 MPI
processes to grid 1, 6 MPI processes to grid 2 and 10 MPI processes to grid 3 in order to load balance between two dual 6-core
computers.
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(a) t=1.6667 (b) t=2.5

(c) t=3.5417 (d) t=5.4167

Figure 37: The passive scalar rendered as smoke for the three dimensional smoke jet past rotating ellipsoid example.
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Figure 38: The passive scalar rendered as smoke at t = 9.8333 for the three dimensional smoke jet past rotating ellipsoid
example.
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7. Conclusion

We have introduced a new adaptive scheme for simulating the incompressible Navier-Stokes equations
using a Chimera grid approach allowing multiple overlapping and arbitrarily translated and oriented Carte-
sian grids to be used as a composite domain. We have developed both first and second order accurate ALE
semi-Lagrangian advection schemes allowing each grid to be advected independently by exchanging bound-
ary conditions in ghost cells. We have developed a monolithic second order Poisson equation solver using
a Voronoi diagram spatial discretization in order to combine the grids into a single continuous symmetric
positive definite discretization. In order to compute the Voronoi diagram we have developed a simple and
robust meshing scheme which scales well in parallel implementations by requiring that the geometry only
be computed at intergrid boundaries. By utilizing a Voronoi diagram our discretization uses second order
accurate centered pressure differences which are orthogonal to their corresponding faces allowing hydrostatic
cases to be solved exactly. We have also extended the Poisson solver to solve heat equations on cells centers
directly and to solve for viscous forces on staggered velocity fields. By exploiting a Chimera grid approach
we have preserved the accurate finite differences, lightweight cache coherent memory layouts and straightfor-
ward domain decomposition aspects of Cartesian grids. Unlike AMR approaches which are generally limited
to axis aligned grids only, we are able to efficiently represent non-grid aligned features. In some ways this
is analogous to the second order accurate piecewise-linear interface calculation (PLIC) scheme of volume of
fluid (VOF) methods as opposed to the first order simple line interface calculation (SLIC) scheme.

There are numerous avenues for future research. While we briefly addressed the problem of finding a more
accurate and faster method for solving for viscous forces directly on the original face degrees of freedom, we
believe a second order accurate treatment is important in order to allow for efficient solutions in the variable
viscosity case. We also note that our pressure projection introduced some artifacts in the vorticity along
intergrid boundaries when the solution on the Voronoi discretization is mapped back to the Cartesian grids.
This mapping also did not guarantee zero divergence at Cartesian cells with interpolated faces. Conservative
advection (see e.g. [51, 28]) also poses interesting issues since one would need to account for the duplication
of values in overlapped regions in order to guarantee conservation. As we continue to scale our solver to
large systems we expect the linear system to become the limiting factor particularly as the incomplete
Cholesky preconditioner becomes less effective since we compute it only on the diagonal block local to the
computational node when computing in parallel. Multigrid preconditioners hold significant promise and we
believe that our SPD formulation could greatly ease their implementation for more complicated geometries.
Finally, while our work has somewhat strayed from the original intention of overlapping grid methods to
have very accurate fluid-structure boundary conditions through the use of body fitted grids, it is likely that
a more general formulation of our approach could be used with different types of grids allowing for the use
of overlapping conforming grids.
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[14] G. Carré, S. D. Pino, B. Després, and E. Labourasse. A cell-centered lagrangian hydrodynamics scheme
on general unstructured meshes in arbitrary dimension. J. Comput. Phys., 228(14):5160–5183, 2009.

[15] P. M. Carrica, R. V. Wilson, R. W. Noack, and F. Stern. Ship motions using single-phase level set with
dynamic overset grids. Computers and Fluids, 36(9):1415–1433, 2007.

[16] L. Chang and G. Yuan. An efficient and accurate reconstruction algorithm for the formulation of
cell-centered diffusion schemes. J. Comput. Phys., 231(20):6935–6952, 2012.

[17] H. Chen, C. Min, and F. Gibou. A supra-convergent finite difference scheme for the poisson and heat
equations on irregular domains and non-graded adaptive cartesian grids. J. Sci. Comput., 31(1):19–60,
2007.

[18] G. Chesshire and W. D. Henshaw. Composite overlapping meshes for the solution of partial differential
equations. J. Comput. Phys., 90(1):1–64, 1990.

[19] A. Chorin. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys.,
2:12–26, 1967.

63



[20] F. Colin, R. Egli, and F. Lin. Computing a null divergence velocity field using smoothed particle
hydrodynamics. J. Comput. Phys., 217:680–692, 2006.

[21] S. L. Cornford, D. F. Martin, D. T. Graves, D. F. Ranken, A. M. Le Brocq, R. M. Gladstone, A. J.
Payne, E. G. Ng, and W. H. Lipscomb. Adaptive mesh, finite volume modeling of marine ice sheets. J.
Comput. Phys., 2012. In Press.

[22] S. Cummins and M. Rudman. An SPH projection method. J. Comput. Phys., 152(2):584–607, 1999.

[23] J. K. Dukowicz, M. C. Cline, and F. L. Addessio. A general topology godunov method. J. Comput.
Phys., 82(1):29–63, 1989.

[24] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces. ACM
Trans. Graph. (SIGGRAPH Proc.), 21(3):736–744, 2002.

[25] L. Ge and F. Sotiropoulos. A numerical method for solving the 3d unsteady incompressible navier-stokes
equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys., 225(2):1782–
1809, 2007.

[26] U. Ghia, K. Ghia, and C. Shin. High-re solutions for incompressible flow using the Navier-Stokes
equations and a multigrid method. J. Comput. Phys., 48:387–411, 1982.

[27] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics-theory and application to non-
spherical stars. Mon. Not. R. Astron. Soc., 181:375, 1977.

[28] J. Grétarsson and R. Fedkiw. Fully conservative, robust treatment of thin shell fluid-structure interac-
tions in compressible flows. Journal of Computational Physics, 245:160–204, 2013.

[29] F. Harlow and J. Welch. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of
Fluid with Free Surface. Phys. Fluids, 8:2182–2189, 1965.

[30] F. H. Harlow. The particle-in-cell computing method for fluid dynamics. Methods in Computational
Physics, 3:319, 1963.

[31] W. D. Henshaw. A fourth-order accurate method for the incompressible Navier-Stokes equations on
overlapping grids. J. Comput. Phys., 113(1):13–25, 1994.

[32] W. D. Henshaw, H.-O. Kreiss, and L. G. M. Reyna. A fourth-order-accurate difference approximation
for the incompressible navier-stokes equations. Computers and Fluids, 23(4):575–593, 1994.

[33] William D. Henshaw. On multigrid for overlapping grids. SIAM Journal on Scientific Computing,
26(5):1547–1572, 2005.

[34] William D. Henshaw and G. S. Chesshire. Multigrid on composite meshes. SIAM Journal on Scientific
and Statistical Computing, 8(6):914–923, 1987.

[35] William D. Henshaw and Donald W. Schwendeman. An adaptive numerical scheme for high-speed
reactive flow on overlapping grids. J. Comput. Phys., 191:420–447, 2003.

[36] William D. Henshaw and Donald W. Schwendeman. Moving overlapping grids with adaptive mesh
refinement for high-speed reactive and non-reactive flow. J. Comput. Phys., 216(2):744–779, 2006.

[37] William D. Henshaw and Donald W. Schwendeman. Parallel computation of three-dimensional flows
using overlapping grids with adaptive mesh refinement. J. Comput. Phys., 227(16):7469–7502, 2008.

[38] M. Hinatsu and J. H. Ferziger. Numerical computation of unsteady incompressible flow in complex
geometry using a composite multigrid technique. Int. J. Num. Meth. Fluids, 13(8):971–997, 1991.

64



[39] C. Hirt, A. Amsden, and J. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow
speeds. J. Comput. Phys., 135:227–253, 1974.

[40] D. C. Jespersen, T. H. Pulliam, and P. G. Buning. Recent enhancements to OVERFLOW. paper
97-0644, AIAA, 1997.

[41] C. Ji, A. Munjiza, and J. J. R. Williams. A novel iterative direct-forcing immersed boundary method
and its finite volume applications. J. Comput. Phys., 231(4):1797–1821, 2012.

[42] S. Y. Kadioglu and M. Sussman. Adaptive solution techniques for simulating underwater explosions
and implosions. J. Comput. Phys., 227:2083–2104, 2008.

[43] Y. Kallinderis and H. T. Ahn. Incompressible navier-stokes method with general hybrid meshes. J.
Comput. Phys., 210(1):75–108, 2005.

[44] P. K. Khosla and S. G. Rubin. A diagonally dominant second-order accurate implicit scheme. Computers
and Fluids, 2(2):207–209, 1974.

[45] B. Koobus and C. Farhat. On the implicit time integration of semi-discrete viscous fluxes on unstructured
dynamic meshes. Int. J. Num. Meth. Fluids, 29(8):975–996, 1999.

[46] B. Koobus and C. Farhat. Second-order time-accurate and geometrically conservative implicit schemes
for flow computations on unstructured dynamic meshes. Comp. Meth. Appl. Mech. Eng., 170(1):103–
129, 1999.

[47] S. Koshizuka, H. Tamako, and Y. Oka. A particle method for incompressible viscous flows with fluid
fragmentation. Comput. Fluid Dyn. J, 1995.

[48] M. Kucharik, M. Shashkov, and B. Wendroff. An efficient linearity-and-bound-preserving remapping
method. J. Comput. Phys., 188(2):462–471, 2003.

[49] Jinmo Lee and Donghyun You. An implicit ghost-cell immersed boundary method for simulations of
moving body problems with control of spurious force oscillations. Journal of Computational Physics,
233(0):295 – 314, 2013.

[50] Jongho Lee, Jungwoo Kim, Haecheon Choi, and Kyung-Soo Yang. Sources of spurious force oscillations
from an immersed boundary method for moving-body problems. Journal of Computational Physics,
230(7):2677 – 2695, 2011.

[51] M. Lentine, J.T. Grétarsson, and R. Fedkiw. An unconditionally stable fully conservative semi-
lagrangian method. J. Comput. Phys., 230:2857–2879, 2011.

[52] T. Linde and P. L. Roe. An adaptive cartesian mesh algorithm for the euler equations in arbitrary
geometries. In 9th Computational Fluid Dynamics Conference, pages 1–7. AIAA, 1989.

[53] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques for level set methods and incom-
pressible flow. Computers and Fluids, 35:995–1010, 2006.

[54] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree data structure. ACM
Trans. Graph. (SIGGRAPH Proc.), 23:457–462, 2004.

[55] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled sph and particle level set fluid
simulation. IEEE TVCG, 14(4):797–804, 2008.
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